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Abstract. Analytical expressions for the ratio of the root mean square fluctuation in atomic 
positions on the equilibrium lattice positions and the nearest neighbor distance and the mean 
melting curves of bcc binary alloys have been derived. This melting curve provides information on 
Lindemann’s melting temperatures of binary alloys with respect to any proportion of constituent 
elements and on their euctectic points. Numerical results for some bcc binary alloys are found to 
be in agreement with experiment.  
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1. Introduction 

The melting of materials has great scientific and technological interest. The problem is to 
understand how to determine the temperature at which a solid melts, i.e., its melting temperature. The 
atomic vibrational theory has been successfully applied by Lindemann and others [1-5]. The 
Lindemann’s criterion [1] is based on the concept that the melting occurs when the ratio of the root 
mean square fluctuation (RMSF) in atomic positions on the equilibrium lattice positions and the 
nearest neighbor distance reaches a critical value. Hence, the lattice thermodynamic theory is one of 
the most important fundamentals for interpreting thermodynamic properties and melting of materials 
[1-6, 8-15]. The binary alloys have phase diagrams containing the liquidus or melting curve going 
from the point corresponding the melting temperature of the host element to the one of the doping 
element. The minimum of this melting curve is called the eutectic point. The melting is studied by 
experiment [7] and by different theoretical methods. X-ray Absorption Fine Structure (XAFS) 
procedure in studying melting [8] is focused mainly on the Fourier transform magnitudes and 
cumulants of XAFS. The melting curve of materials with theory versus experiments [9] is focused 
mainly on the dependence of melting temperature of single elements on pressure. The 
phenomenological theory (PT) of the phase diagrams of the binary eutectic systems has been 
developed [10] to show the temperature-concentration diagrams of eutectic mixtures, but a complete 
“ab initio” theory for the melting transition is not available [11,16]. Hence, the calculation of melting 
temperature curve versus proportion of constituent elements of binary alloy and its eutectic point still 
remains an interesting problem.  
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The purpose of this work is to develop a thermodynamic lattice theory for analytical calculation of 
the mean melting curves and eutectic points of bcc binary alloys. This melting curve provides 
information on Lindemann’s melting temperatures of binary alloys with respect to any proportion of 
constituent elements and on the eutectic points. Numerical results for some bcc binary alloys are found 
to be in agreement with experiment [7]. 
 

2. Formalism 

The binary alloy lattice is always in an atomic thermal vibration so that in the lattice cell n the 
atomic fluctuation function, denoted by number 1 for the 1st element and by number 2 for the 2nd 
element composing the binary alloy, is given by 
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where qω is the lattice vibration frequency and q is the wave number. 

The atomic oscillating amplitude is characterized by the mean square displacement (MSD) or 
Debye-Waller factor (DWF) [3, 12-15] which has the form  
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where K is the scattering vector equaling a reciprocal lattice vector, and qu  is the mean atomic 

vibration amplitude. 
It is apparent that 1/8 atom on the vertex and one atom in the center of the bcc are localized in an 

elementary cell. Hence, the total number of atoms in an elementary cell is 2. Then if on average s is 
atomic number of type 1 and (2 - s) is atomic number of type 2, the quantity qu  is given by 
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The potential energy of an oscillator is equal to its kinetic energy so that the mean energy of atom 
k vibrating with wave vector q has the form 
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Hence, using Eqs. (2, 5) the mean energy of the crystal consisting of N lattice cells is given by 
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where, M1, M2  are the masses of atoms of types 1 and 2, respectively. 
Using the relation between qu2 and qu1  [13], i.e., 

 2112 /, MMmmuu qq == , (7) 

and Eqs. (5, 6) we obtain the mean energy for the atomic vibration with wave vector q 
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The mean energy for this qth lattice mode calculated using the phonon energy with qn as the mean 

number of oscillators is given by 
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Hence, comparing Eq. (8) to Eq. (9) we obtain 
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Using Eq. (4) and Eq. (7) the mean atomic vibration amplitude has the form 
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To study the MSD Eq. (3) we use the Debye model, where all three vibrations have the same 
velocity [3]. Hence, for each polarization with taking Eq. (11) into account we get the mean value  
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When taking all three polarizations the factor 1/3 is omitted, so that using Eq. (10) the MSD or 
DWF Eq. (3) with all three polarizations is given by 
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Transforming the sum over q into the corresponding integral [3], Eq. (13) is changed into the 
following form 
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Denoting DDBB kTkz ωθω hh == ,/  with DD θω ,  as Debye frequency and temperature, 
respectively, we obtain 
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 Since we consider the melting, it is sufficient to take the hight temperatures ( DT θ>> ) so that 
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, then the DWF Eq. (15) with using Eq. (7) is given by 
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which is linearly proportional to the temperature T as it was shown already [3, 14]. 
From Eq. (12) with using Eq. (3) for W we obtain 
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 The mean crystal lattice energy has been calculated  
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 Using this expression and Eqs. (6, 7) we obtain the atomic MSF in the form 
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which by using Eq. (17) is given by 
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Using W from Eq. (16) this relation is resulted as 
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Hence, at DT θ>>  the MSF in atomic positions about the equilibrium lattice positions is 
determined by Eq. (21) which is linearly proportional to the temperature T. 

Therefore, at a given temperature T the quantity R defined by the ratio of the RMSF in 
atomic positions about the equilibrium lattice positions and the nearest neighbor distance d is 
given by 
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Based on the Lindemann’s criterion the binary alloy will be melted when this value R 
reaches a threshold value Rm, then the Lindemann’s melting temperature mT  for a bcc binary 
alloy is defined as 
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If we denote x as proportion of the mass of the element 1 in the binary alloy, then we have 
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From this equation we obtain the mean number of atoms in the element 1 for each binary alloy 
lattice cell  
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We consider one element to be the host and another dopant. If the tendency to be the host is equal 
for both constituent elements, we can take averaging the parameter m with respect to the atomic mass 
proportion of the constituent elements in alloy as follows  
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This equation can be solved using the successive approximation. Substituting the zero-order with s 
from Eq. (25) in this equation we obtain the one of the 1st order  
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which provides the following solution 
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replacing m in Eq. (23) for the calculation of Lindemann’s melting temperatures. 
 The threshold value Rm of the ratio of RMSF in atomic positions on the equilibrium lattice 

positions and the nearest neighbor distance at the melting is contained in χ  which will be obtained by 
an averaging procedure. The average of χ can not be directly based on 1χ  and 2χ because it has the 
form of Eq. (23) containing 2

mR , i.e., the second order of mR , while the other averages have been 
realized based on the first order of the displacement as Eq. (22). That is why we have to perform 
average for 2/1χ  and then obtain 
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containing 1χ  for the 1st element and 2χ for the 2nd element, for which we use the following limiting 
values 
 2,/9;0,/9 1)1(12)2(2 ==== sMTsMT mm χχ  (30) 

with Tm(1) and Tm(2) as melting temperatures of the first or doping and the second or host element, 
respectively, composing the binary alloy. 

Therefore, the melting temperature of bcc binary alloys has been obtained actually from our 
calculated ratio of RMSF in atomic positions on the equilibrium lattice positions and nearest 
neighbour distance Eq. (22), which contains contribution of different binary alloys consisted of 
different pairs of elements with the masses M1 and M2 of the same bcc structure. 

The eutectic point is calculated using the condition for minimum of the melting curve, i.e., 

 0=
dx

dTm . (31) 

 

3. Numerical results and comparison to experiment  

 Now we apply the derived theory to numerical calculations for bcc binary alloys. According to the 
phenomenological theory (PT) [10] Figure 1 shows the typical possible phase diagrams of a binary 
alloy formed by the components A and B, i.e., the dependence of temperature T on the proportion x of 
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element B doped in the host element A. Below isotropic liquid mixture L, the liquidus or melting 
curve beginning from the melting temperature TA of the host element A passes through a temperature 
minimum TE known as the eutectic point E and ends at the melting temperature TB of the doping 
element B. The phase diagrams contain two solid crystalline phases α and β. The eutectic point is 
varied along the eutectic isotherm T = TE. The eutectic temperature TE can be a value lower TA and TB 
(Figure 1a) or in the limiting cases equaling TA (Figure 1b) or TB (Figure 1c). The mass proportion x 
characterizes actually the proportion of doping element mixed in the host element to form binary alloy. 

(a)    (b)    (c) 

Fig. 1. Possible typical phase diagrams of a binary alloy formed by components A and B. 

Fig. 2. Calculated melting curves and eutectic points of binary alloys Cs1-xRbx, Cr1-xMox compared to 
experimental phase diagrams [7]. 

Our numerical calculations using the derived theory are focused mainly on the mean melting 
curves providing information on the Lindemann’s melting temperatures and eutectic points of bcc 
binary alloys. All input data have been taken from Ref. 6. Figure 2 illustrates the calculated melting 
curves of bcc binary alloys Cs1-xRbx and Cr1-xMox compared to experiment [7]. They correspond to the 
case of Figure 1a of the PT. For Cs1-xRbx the calculated eutectic temperature TE = 288 K and the 
eutectic proportion xE = 0.3212 are in a reasonable agreement with the experimental values TE = 285.8 
K and xE = 0.35 [7], respectively. For Cr1-xMox the calculated eutectic temperature TE = 2125 K agrees 



N.V. Hung et al. / VNU Journal of Science, Mathematics - Physics 26 (2010) 147-154 153

0 0.2 0.4 0.6 0.8 1

1800

1850

1900

1950

2000

2050

2100

2150

2200

2250

2300

Mass proportion x of V

Te
m

pe
ra

tu
re

 T
(K

)

Melting curve, present
Melting temperature of Fe, Ref. 6
Melting temperature of V, Ref. 6
Eutectic point, present

Fe1-xVx

0 0.2 0.4 0.6 0.8 1

500

1000

1500

2000

2500

Proportion x of Cs

Te
m

pe
ra

tu
re

 T
(K

)

Melting curve, present
Melting temperature of Cr, Ref. 6
Melting temperature of Cs, Ref. 6
Eutectic point, present

Cr1-xCsx

well with the experimental value TE = 2127 K [7] and the calculated eutectic proportion xE = 0.15 is in 
a reasonable agreement with the experimental value xE = 0.20 [7]. Figure 3 shows that our calculated 
melting curve for Fe1-xVx corresponds to the phase diagram of Figure 1b and for Cr1-xCsx to those of 
Figure 1c of the PT. Table 1 shows the good agreement of the Lindemann’s melting temperatures 
taken from the calculated melting curve with respect to different proportions of constituent elements of 
binary alloy Cs1-xRbx with experimental values [7]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Calculated melting curve and eutectic point of binary alloys Fe1-xVx and Cr1-xCsx. 

Table 1. Comparison of calculated Lindemann’s melting temperatures Tm(K) of Cs1-xRbx to experiment [7] with 
respect to different proportions x of Rb doped in Cs to form binary alloy  

 

Proportion x of Rb 0.10 0.30 0.50 0.70 0.90 
Tm(K), Present 292.6 287.5 290.0 295.0 305.0 
Tm(K), Exp. [7] 291.4 286.0 287.4 293.5 304.0 

 

4. Conclusions 

 In this work a lattice thermodynamic theory on the melting curves, eutectic points and eutectic 
isotherms of bcc binary alloys has been derived. Our development is derivation of analytical 
expressions for the melting curves providing information on Lindemann’smelting temperatures with 
respect to different proportions of constituent elements and eutectic points of the binary alloys.  

The significance of the derived theory is that the calculated melting curves of binary alloys 
correspond to the experimental phase diagrams and to those qualitatively shown by the 
phenomenological theory. The Lindemann’s melting temperatures of a considered binary alloy change 
from the melting temperature of the host element when the whole elementary cell is occupied by the 
atoms of the host element to those of binary alloy with respect to different increasing proportions of 
the doping element and end at the one of the pure doping element when the whole elementary cell is 
occupied by the atoms of the doping element.  
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