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Abstract. In this paper, the oscillation, convergence and boundedness for neutral difference

equations

.
Az + 6p2p—r) + Z a;(n)F(2p—m;) =0, n=0,1,--
i=1
are investigated.
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1. Introduction

Recently there has been a considerable interest in the oscillation of the solutions of difference

equations of the form
A(@y, +02p—r) + a(n)z,_y =0,

where n € N, the operator A is defined as Az, = 2,11 — @, the function a(n) is defined on N, § is
a constant, 7 is a positive integer and o is a nonnegative integer, (see for example the work in [1-7]
and the references cited therein).

In [2], the author obtained some sufficient criterions for the oscillation and convergence of
solutions of the difference equation

A@n + 0p—r) + Y ai(n) F(Tn_m,) = 0,

i=1
for n € N,n > a for some a € N, the operator A is defined as Ax,, = x,+1 — . ¢ is a constant,
T,7, M1, Mo, -+ ,m, are fixed positive integers, and the functions «;(n) are defined on N and the

function F' is defined on R.
Motivated by the work above, in this paper, we aim to study the oscillation and asymptotic
behavior for neutral difference equation

-
A@n + 0p2nr) + Y 0i(n) F(@nm,) = 0, (1)
i=1
where d,,, 7 € N is not zero for infinitely many values of n and /' : R — R is continuous.
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Put A = max{r, mq,---,m,}. Then, by a solution of (1) we mean a function which is defined
for n 2> — A and sastisfies the equation (1) for n € N. Clearly, if

Tp=0Qn, n=-A -A+1,---,—-1,0

are given, then (1) has a unique solution, and it can be constructed recursively.

A nontrivial solution {2}, », of (1) is called oscillatory if for any n; > ng there exists
ny > ny such that a,,, 2,11 < 0. The difference equation (1) is called oscillatory if all its solutions are
oscillatory. If the solution {x,,},, », is not oscillatory then it is said to be nonoscillatory. Equivalently,
the solution {z,}, ., is nonoscillatory if it is eventually positive or negative, i.e. there exists an
integer ny > ng such that x,2,1 > 0 for all n > n.

2. Main results

To begin with, we assume that
xF(x) > 0 for x # 0. (2)

By an argument analogous to that used for the proof of Lemma 3, Theorem 6 and Theorem 7 in [2],
we get the following results.

Lemma 1. Let {x,} be a nonoscillatory solution of (1). Put z, = x, + 6,Zp .
(i) If {x,, } is eventually positive (negative), then {z,} is eventually nonincreasing (nondecreas-

ing).
(ii) If {x,} is eventually positive (negative) and there exists a constant ~y such that

—1<v<d, VmeN

then eventually z, > 0 (z, < 0).

Theorem 1. Suppose there exist positive constants o;(i = 1,2, -+, r) and M such that
a;(n) 2 o, Vn €N,
|F(@)| = Mlz|, Va,
0, 20, VneN.

Then, every nonoscillatory solution of (1) tend to 0 as n — oo.

Theorem 2. Assume that

> > ailh) - . (3)

=1 1=1
and there exists a constant n such that

-1<n<6,<0, YneN. (4)

Suppose further that, if |x| > c then |F(x)| > ¢ where ¢ and ¢, are positive constants. Then, every
nonoscillatory solution of (1) tends to 0 as n — oo.



D.C. Huong / VNU Journal of Science, Mathematics - Physics 26 (2010) 155-162 157

Theorem 3. Assume that the given hypothese in Theorem 2 are satisfied. If F' is a nondecreasing

function such that
dt

(0% 0 dt
—<ooand/ —— > —oc0 forall a >0, 5
[ 7o 0 )

then the equation (1) is oscillatory.

Proof. Suppose that (1) has a nonoscillatoty solution {x,}. If 2,, > 0 for n > ng, then by Lemma 1
there exists a ny > ng such that z,,_, > 0,2, >0 (1 <i< 1), 2, >0and Az, <0 forn > n;.
Put z, = 2, + 2, and m, = max m;. We note that (4) implies that 2, < x,, and from (1), we

1 r
have i
Az, + Z a;(n)F(zp—m;) <0
and so i .
Az, + Zozi(n)F(zn) <0 form>ns—mn +ms
o i=1

zr:ozi(n) < — Az for n = ny = ny + my.
i=1 F(z

Now for 2,11 < ¢ < 2z, we have F(t) < F(z,), and so

Zai(n)g/n . for n = ns.
P F®)

Zn41

3
~—

Summing both sides of the above inequality from 79 to n and taking the limit as n — oo, we get

iia'(ﬁK/% e </an A
l=ny i=1 ST s F'(0) o F(t) ’

which contradicts (3). The proof for the case {x,} eventually negative is similar.

Example 1. Consider the difference equation
2

1—n 1 1
A(n —n,) 50, nxl. 6
Ty + 5, Y2 Jrlz:nJrix”’ n (6)
It is clear that this equation is a particular case of (1), where 6,, = 15—:, a;(n) = n}H.,Vn € N,i =

1,i— 2 and F(2) = 5.
It is easy to verify that all conditions of Theorem 3 hold. Hence, the equation (6) is oscillatory.

Theorem 4. Assume that the first and the third condition in Theorem 2 are satisfied and there exists
constants o, u such that

uw<o, <o < —1. (7)
Suppose further that, T > m, = max m; and F is a nondecreasing function such that
°dt € dt
—<ooand/ —— < oo forall e >0, (8)
/e F(1) —o (1)

then the equation (1) is oscillatory.
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Proof. Suppose that (1) has a nonoscillatoty solution {x,}, z, > 0 for n > ng. From Lemma 1 there
exists a ny > ng such that @, _, > 0,2, >0 (1 <i<r),2, <0and Az, <0 forn >ny. Then
from (7) we have
U K Oppr < 2p <0
and hence
Zn+T
7

0< <0, forn=n.

Thus, it follows that

z .
F(m)g Flzy ) forn=mns>m +mel<i<r
i

Since n + 7 —m; 2 n+ 1,1 < ¢ < r the above inequality gives

F(Z”“)g F(M)g Fzpm), 1<i<r
7 7
Hence, from (1) we find
a Zn+1
Az, + a;(n F( )< 0
; (mF (=
or
r A .
Z%‘(n) < —— . forn > ny. (9)
r(=)
Now for %” <t < Z”T“ we have F(Z”T“) > F(t), and so
Zn+41
dt
for n > na. (10)

l&g/ o
,MF(ZnTJrl) @ F)

N

Using (10) in (9) and summing both sides from 7, to n and taking the limit as n — oo, we get

0 Zntl

. v dt
Z Zozi(ﬁ) < —,u/zn_2 0] for n = ns.
I

l=ng 1=1

But this in view of (8) contradicts (7). The proof for the case {z,} eventually negative is similar.

Example 2. Consider the difference equation

2 .
1+2n T g
A(mn— - xn2)+z;n+imni07 n>1. (11)
It is clear that this equation is a particular case of (1), where ¢,, = ——HHQ”, a;(n) = nlﬂ ,vn e N,i =

1,i=2and F(z) = 2°.
It can be verified that all conditions of Theorem 4 hold. Hence, the equation (11) is oscillatory.

Theorem 5. Suppose that 6,, 2 0, n € N. Then, all unbounded solutions of the equation (1) are
oscillatory.
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Proof. Suppose the contrary. Without loss of generality, let {x,} be an unbounded and eventually
positive solution of (1). By Lemma 1, we have z, > 0 and Az, < 0 eventually. Hence, there exists
lim z,. Put lim z, = 8. We have

n—od n—od

B €10, 00). (12)

Now, in view of ¢, > 0, n € N we have z, > x,, and (12) show that {«x,} is bounded, which is a
contradiction.
From now we always assume that

xF(x) <0 for x # 0. (13)

[e.°] T
Theorem 6. Assume that 6, > 0, n €N, > > o;(f) < oo and F is nonincreasing. Suppose
=11=1

fitrther that

oo dt Codl
/C W—ooand/oomoo Jor all ¢ > 0. (14)

Then, all nonoscillatory solutions of the equation (1) are bounded.

Proof. Let {x,} be a nonoscillatory solution of (1), and let ng € N be such that |z,| # 0 for all

n > ng. Assume that x,, > 0 for all » > ng. Put m, = lmlaxr and n; = ng + 7+ m.. We
have 2, + 4, >0 foralln =2 ny and 1 <7 < r. Put 2, = 2, + 0,2, ~. We have 2z, > 0 and
Az, = — zr: a;(n)F(2p—m;) = 0 for all n > ny. Hence, {z,} is nondecreasing and satisfies z, > 2,
for all n 21:7’1“. Therefore, we find

r r

Az, = — Z (N F (2 ;) < — Z i (n) F(zp—m,)

or

Since ¢ € [z, 2n+1], F(t) < F(z,). By (15) we obtain

Fatl o dt Az :
— <—— 2D ai(n), VYn=mng. (16)
L e re <X

Summing the inequality (16) from 7 to » — 1 and taking the limit as n — oo, we have

- / S 2 e, (1)

l=nq 1=1

From (17) and the hypothese of Theorem 6 we find that {z,} is bounded from above. Since 0 < z,, <
Zn> {xp } is also bounded from above. The proof is similar when {z,,} is eventually negative.
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Example 3. Consider the difference equation
2

L
A(mn +2 .%‘nfg) + ; o 1>n( x? )=0, n>1. (18)

It is clear that this equation is a particular case of (1), where §,, = 2", o;(n) = ¥Yn € N,¢ =

1,i=2and F(z) = —a5.
It can be verified that all conditions of Theorem 6 hold. Hence, all nonoscillatory solutions of
the equation (18) are bounded.

(1+1)”7

Corollary. Suppose that the assumptions of Theorem 6 hold. Further, suppose that {6, } tends to 0
as n — oco. Then, every nonoscillatory solution of (1) tends to 0 as n — oo.

Proof. Let {x,} be an eventually positive solution of (1). By Theorem 6, {z,} is eventually positive,
nondecreasing and bounded above. Thus, there exists a constant C' > 0 such that

Opnn_7 < zp < C
for sufficiently large . Hence,

Tpr < — — 0asn— oo
On

Theorem 7. Assume that
oD r
0> ailt) = oo, (19)
=1 i=1

and there exists a constant 6 > 0 such that

6, <06, ¥necN. (20)

Suppose further that, if |x| = c then |F(x)| = ¢1 where ¢ and ¢y are positive constants. Then, for
every bounded nonoscillatory solution {x,} of (1) we have

lim inf |2,| = 0.
n—0o0

Proof. Assume that, {x,} is a bounded nonoscillatory solution of (1). Then, there exists constants
¢, C' > 0 such that ¢ < &, < C for all n > ny € N. It implies that

< (1+34)C. (21)

Putm*flmax and n; = ng +7 +my. Wehave z,, , ,,, > cforalln >n; and 1 <7 < r. By the
T

hypothese of Theorem 7, there exists a constant ¢; > 0 such that | F/(2,,_p,| = ¢ for all n > ny and
1 <7 < r. Thus,

r

Az, = — Z a;(n) F(2p—mm;) Z a;(n)ey, Yn =mny. (22)

i=1
Summing the inequality (22) from ny to n — 1, we obtaln

n—1 r
Zn = Zn, +C1 E E a;(£) — oo as n — oo,

l=nq 1=1
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which contradicts (22). The proof is complete.

Example 4. Consider the difference equation

2
2n — 1 1 o
Al + = xn1)+; () =0, n>1, (23)
where o is an odd integer. It is clear that this equation is a particular case of (1), where 6,, =
a;(n) = n}H.,Vn eN,i=1,i=2and F(z) = —a.

It can be verified that all conditions of Theorem 7 hold.

Theorem 8. Assume that the conditions (3), (7) hold and F' is a nonincreasing function such that
* dt O dt
—<ooand/ —— > —oco forall a> 0.
N T 2
Further, suppose that m; = 7, V1 <i <r. Then, every nonoscillatory solution {x,} of (1) satisfies

|2, — o0 as n — oco.

Proof. Let {x,} be a nonoscillatory solution of (1). Assume that {x,,} is eventually positive. Then,
there exists ng € N such that «,, - _,,,, > 0foralln > ngand 1 <7 < r. Put 2, = a,, + dpx, .

—éwwn%m»

Therefore, z, — L > —coasn —oco. If L

Then, since Az, > 0 for all n > ng, {z,} is nondecreasing for n > ng.
<

0 then z,, < 0 for all n > 0 and hence

0>z, =xpn+0,Tn_r >NTp_r, N =ng.

ZndT

It implies 2,4, > nx,, n =mngorx, > P

is nonincreasing, we have

n>=ng. Nowsince m; 27, V1<i<randF

r

Az, = — zr:ozl(n)F(M)2 — Zoéi(n)F(Z—n)y

n — n
or
Az, -
— 2 Y ailn)
F(Z—”) i—1
n
NowforZ”—*lgth—”wehave—%2— , and so
(%)
Tdt o 1 - Az,
ﬁ:F® ﬁﬂ aifn) = ———=— forn >,
o Fr(5) S (=r(3)
or

W dt Az, -
n/zn_H 30 > —F(Z_n) > Z;ozi(n) for n > ng. (24)
n n 1=

Summing both sides of the inequality (24) from 7ng to » and taking the limit as » — oo, we get
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which contradicts (3). Thus, L > 0. Now let ny > ng be such that 0 < z, < 2z, + oz, forn = n;.
Then, x,, > —ox, . and by induction, we have 2, ;; > (—U)jmn,T for each positive integer j. This
implies that 2, — oo as n — oco. The proof is similar when {z,,} is eventually negative.

Example 5. Consider the difference equation
2

24+3n 1 1
A(n—in,) 2 )=0, n>1. 2
tn = g JH Y (el ) =0 (25)
It is clear that this equation is a particular case of (1), where ¢,, = —%, a;(n) = n}H.,Vn €N, =

1,i=2and F(z) = —a3.
It can be verified that all conditions of Theorem 8 hold.
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