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Abstract. This paper deals with a formula of stability radii for an linear difference equation

(LDEs for short) with the coefficients varying in time under structured parameter perturbations.

It is shown that the lp− real and complex stability radii of these systems coincide and they are

given by a formula of input-output operator. The result is considered as an discrete version of

a previous result for time-varying ordinary differential equations [1].
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1. Introduction

Many control systems are subject to perturbations in terms of uncertain parameters. An important

quantitative measure of stability robustness of a system to such perturbations is called the stability

radius. The concept of stability radii was introduced by Hinrichsen and Pritchard 1986 for time-

invariant differential (or difference) systems (see [2, 3]). It is defined as the smallest value ρ of the

norm of real or complex perturbations destabilizing the system. If complex perturbations are allowed,

ρ is called the complex stability radius. If only real perturbations are considered, the real radius is

obtained. The computation of a stability radius is a subject which has attracted a lot of interest over

recent decades, see e.g. [2, 3, 4, 5]. For further considerations in abstract spaces, see [6] and the

references therein. Earlier results for time-varying systems can be found, e.g., in [1, 7]. The most

successful attempt for finding a formula of the stability radius was an elegant result given by Jacob

[1]. In that paper, it has been given by virtue of output-input operator a formula for Lp− stability for

time-varying system subjected to additive structured perturbations of the form

ẋ(t) = B(t)x(t) + E(t)∆(F (·)x(·))(t), t > 0, x(0) = x0,

where E(t) and F (t) are given scaling matrices defining the structure of the perturbation and ∆ is

an unknown disturbance. We now want to study a discrete version of this work by considering a

difference equation with coefficients varying in time

x(n + 1) = (An + En∆Fn)x(n), n ∈ N. (1)
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This problem has been studied by F. Wirth [8]. However, in this work, he has just given an estimate

for stability radius. Following the idea in [1], we set up a formula for stability radius in the space lp
and show that when p = 2 and A, E, F are constant matrix, we obtain the result dealt with in [5]

The technique we use in this paper is somewhat similar to one in [1]. However, in applying the

main idea of Jacob in [1] to the difference equations, we need some improvements. Many steps of the

proofs in the paper [1] are considerably reduced and this reduction is valid not only in discrete case

but also in continuous time one.

An outline of the remainder of the paper is as follows: the next section introduces the concept

of Stability radius for difference equation in lp. In Section 3 we prove a formula for computing the

lp− stability radius.

2. Stability radius for difference equation

We now establish a formulation for stability radius of the varying in times system
{

x(n + 1) = Bnx(n), n ∈ N, n > m

x(m) = x0) ∈ Rd.
(2)

It is easy to see that the equation (2) has a unique solution x(n) = Φ(n, m)x0 where Φ =

{Φ(n, m)}n>m>0 is the Cauchy operator given by Φ(n, m) = Bn−1 · · ·Bm, n > m and Φ(m, m) =

I . Suppose that the trivial solution of (2) is exponently stable, i.e., there exist positive constants

M and α ∈ (0, 1) such that

‖Φ(n, m)‖
Kd×d 6 Mαn−m, n > m > 0. (3)

We introduce some notations which are usually used later. Let X, Y be two Banach spaces

and N be the set of all nonegative integer numbers. Put

• l(0,∞; X) = {u : N → X}.

• lp(0,∞; X) = {u ∈ l(0,∞; X) :
∑∞

n=0 ‖u(n)‖p < ∞} endowed with the norm ‖u‖lp(0,∞;X) =

(
∑∞

n=0 ‖u(n)‖p)1/p < ∞.

• lp(s, t; X) = {u ∈ lp(0,∞; X) : u(n) = 0 if n /∈ [s, t]}.

•  L(lp(0,∞; X), lp(0,∞; Y )) is the Banach space of all linear continuous operators from

lp(0,∞; X) to lp(0,∞; Y ).

Sometime, for the convenience of the formulation, we identify lp(s, t; X) with the space of all

sequences (u(n))t
n=s.

The truncated operators of l(0,∞; X) are defined by

πt(x(·))(k) =

{
x(k), 0 6 k 6 t,
0, k > t,

and

[x(·)]s(k) =

{
0, 0 6 k < s,
x(k), k > s.

An operator Γ ∈  L(lp(0,∞; X), lp(0,∞; Y )) is said to be causal if πtAπt = πtA for any t > 0

(see [1]).
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Let A ∈  L(lp(0,∞; Kq), lp(0,∞; Ks)) be a causal operator. We consider the system (2)

subjected to perturbation of the form

x(n + 1) = Bnx(n) + EnA(F.x(·))(n), n ∈ N, (4)

where En ∈ Kd×s; Fn ∈ Kq×d; the operator A is a perturbation.

A sequence (y(n)) ∈ l(0,∞; Kd) is called a solution of (4) with the initial value y(n0) = x0

if

y(n + 1) = Bny(n) + EnA([F.y(·)]n0
)(n), n > n0. (5)

Suppose that (y(n)) is a solution of (4) with the initial value y(n0) = x0. It is obvious

that for n > m > n0 the following constant-variation formula holds

y(n) = Φ(n, m)y(m) +

n−1∑

m

Φ(n, k + 1)EkA([πm−1(F.y(·))]n0
)(k) + EnA(πm−1[F.y(·)]n0

)(n)

+

n−1∑

m

Φ(n, k + 1)EkA([F.y(·)]m)(k) + EnA([F.y(·)]m)(n). (6)

We are now in position to give a formula for stability radii for difference equation. Now

let the unique solution to the initial value problem for (4) with initial value condition x(n0) = x0

denote by x(· ; n0, x0). In the following, we suppose that

Hypothese 2.1. En; Fn; are bounded on N.

We define the following operators

(L0u)(n) = Fn
∑n−1

k=0 Φ(n, k + 1)Eku(k)),

(L̂0u)(n) =
∑n−1

k=0 Φ(n, k + 1)Eku(k),

for all u ∈ lp(0,∞; Ks), n > 0. The first operator is called the input-output operator associated

with (2). Put

(Ln0
u)(n) = (L0[u]n0

)(n), (L̂n0
u)(n) = (L̂0[u]n0

)(n). (7)

We see that these operators are independent of the choice of Tn. It is easy to verify the

following auxiliary results.

Lemma 2.2. Let (3) and Hypothesis hold. The following properties are true

a) Ln0
,∈ L(lp(n0,∞; Ks), lp(n0,∞; Kq)); L̂n0

∈ L(lp(n0,∞; Ks), lp(n0,∞; Kd)),

b) ‖Lt‖ 6 ‖Lt′‖ , t > t′ > 0,

c) There exist constants M1 > 0 such that

‖Φ(·, n0)x0‖lp(n0,∞;Kd) 6 M1 ‖x0‖Kd , n0 > 0, x0 ∈ Kd.

With these operators, any solution x(n) having the initial condition x(n0) = x0) of (4)

can be rewritten under the form

x(n) = Φ(n, n0)x0 + L̂n0
A([F.x(·)]n0

)(n), n > n0. (8)

Definition 2.3. The trivial solution of (4) is said to be globally lp−stable if there exist a constant

M2 > 0 such that

‖x(·; n0, x0)‖lp(n0,∞;Kd) 6 M2 ‖x0‖Kd , (9)

for all x0 ∈ Kd.
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Remark 2.4. From the inequality

‖x(n; n0, x0)‖
Kd 6 ‖x(·; n0, x0)‖lp(n0,∞;Kd)

for any n > n0, it follows that that the global lp-stability property implies the Kd− stability in initial
condition.

In comparing with [1, Definition 3.4], in the discrete case, we use only the relation (9) to

define lp−stability.

3. A formula of the stability radius

First, the notion of the stability radius introduced in [1, 2, 9] is extended to time-varying

difference system (2).

Definition 3.1. The complex (real) structured stability radius of (2) subjected to linear, dynamic

and causal perturbation in (4) is defined by

rK(A; B, E, F ) = inf {‖A‖ : the trivial solution of (4) is not globally lp − stable } ,

where K = C, R, respectively.

Proposition 3.2. If A ∈ L(lp(0,∞; Kq), lp(0,∞; Ks)) is causal and satisfies

‖A‖ < sup
n0>0

‖Ln0
‖−1,

then the trivial solution of the system (4) is globally l p− stable.
Proof. Let m > n0 be arbitrarily given. It is easy to see that there exists an M3 > 0 such that

‖x(n; n0, x0)‖
Kd 6 M3 ‖x0‖ ∀ n0 6 n 6 m. (10)

Therefore,

‖x(·, n0, x0)‖lp(n0,m,Kd) 6 (m− n0)M3 ‖x0‖ . (11)

Now fix a number m > n0 such that ‖A‖ ‖Lm‖ < 1. Due to the assumption on ‖A‖, such an m

exists. It follows from (6) that

x(n, n0, x0) = Φ(n, m)x(m, n0, x0) +

n−1∑

k=m

Φ(n, k + 1)EkA([πm−1(F.x(·, n0, x0))]n0
)(k)

+

n−1∑

k=m

EkA([F.x(·, n0, x0)]m)(k)

for n > m. Therefore,

Fnx(n; n0, x0) = FnΦ(n, m)x(m; n0, x0) + (Lm(A(πm−1[Fx]n0
)))(n) + (Lm(A([Fx]m)))(n).

(12)

From (10) and (12) we have

‖F.x(·; n0, x0)‖lp(m,∞,Kq) 6 ‖F.Φ(·, m)x(m; n0, x0)‖lp(m,∞,Kq)

+ ‖(Lm(A(πm−1[Fx]n0
)))(·)‖lp(m,∞,Kq) + ‖(Lm(A([Fx]m)))(·)‖lp(m,∞,Kq)

6 M1‖F.‖ ‖x(m; n0, x0)‖
Kd

+ ‖Lm‖ ‖A‖ ‖(πm−1[Fx]n0
)(·)‖lp(n0,m,Kq) + ‖Lm‖ ‖A‖ ‖[Fx]m)(·)‖lp(m,∞,Kq) .



L.H. Lan / VNU Journal of Science, Mathematics - Physics 26 (2010) 175-184 179

Therefore,

(1 − ‖Lm‖ ‖A‖) ‖F.x(·; n0, x0)‖lp(m,∞,Kq) 6 ‖F.‖
(
M1M3 + M4‖Lm‖‖A‖

)
‖x0‖

which implies that

‖F.x(·; n0, x0)‖lp(m,∞,Kq) 6 (1 − ‖Lm‖ ‖A‖)−1 ‖F.‖
(
M1M3 + M4‖Lm‖‖A‖

)
‖x0‖ . (13)

Setting M5 := (1 − ‖Lm‖ ‖A‖)−1 ‖F.‖
(
M1M3 + M4‖Lm‖‖A‖

)
we obtain

‖F.x(·; n0, x0)‖lp(m,∞,Kq) 6 M5 ‖x0‖Kd .

Hence, using (11) we have

‖F.x(·; n0, x0)‖lp(n0,∞,Kq) 6 M6 ‖x0‖Kd ,

where M6 = M4 + M5. Further, by (8)

‖x(·; n0, x0)‖lp(n0,∞,Kd) 6 ‖Φ(·, n0)Pn0−1x0‖lp(n0,∞,Kd) + ‖L̂n0
‖‖A‖‖F.x(·, n0, x0))‖lp(n0,∞,Kq)

6 M1‖Pn0−1x0‖ + ‖L̂n0
‖‖A‖‖F.x(·, n0, x0))‖lp(n0,∞,Kq) 6 M7 ‖Pn0−1x0‖ ,

where M7 = M1 + ‖L̂n0
‖‖A‖M6. The proof is complete.

Thus, by Proposition 4.3, the inequality

rK(A; B, E, F ) > sup
n0>0

‖Ln0
‖−1

holds. We prove the converse relation.

We note that ‖Ln‖ is decreasing in n. Therefore, there exists the limit

lim
n0→∞

‖Ln0
‖lp(0,∞;Kq) =:

1

β
.

Proposition 3.3. For every δ, β < δ < ‖L0‖−1 there exists a causal operator A ∈ L(lp(0,∞;

Kq), lp(0,∞; Ks)) with ‖A‖ < δ such that the trivial solution of (4) is not globally l p− stable.

Proof. Let us fix the numbers ε > 0, γ > β satisfying 0 < γ(1−εγ)−1 < A. Since ‖Ln‖lp(0,∞;Kq) ↓
1
β > 1

γ ,

‖Ln‖lp(0,∞;Kq) >
1

γ
, ∀n > 0.

In particular, ‖L0‖ > 1
γ . Therefore, we can choose a function f̃0 ∈ lp(0,∞; Ks) with ‖f̃0‖lp(0,∞;Ks) =

1 such that

‖L0f̃0‖lp(0,∞;Kq) >
1

γ
.

From the properties

lim
n→∞

‖πnf̃0‖lp(0,∞;Ks) = 1, lim
n→∞

‖L0πnf̃0‖lp(0,∞;Kq) = ‖L0f̃0‖ >
1

γ
,

it follows that there exists an m0 ∈ N satisfying

1

‖πm0
f̃0‖

‖L0(πm0
f̃0)‖lp(0,∞;Kq) >

1

γ
.

Denoting f0 = 1

‖πm0
ef0‖

πm0
f̃0 we obtain

‖f0‖lp(0,∞;Ks) = 1, support f0 ⊆ [0, m0] and ‖L0f0‖lp(0,∞;Kq) >
1

γ
.
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Further, for any n > m0 we have

L0(πm0
h)(n) = Fn

∑m0

k=0 Φ(n, k + 1)Ek(πm0
h)(k)

= FnΦ(n, m0 + 1)
∑m0

k=0 Φ(m0 + 1, k + 1)Ek(πm0
h)(k).

Therefore, by virtue of (3), there exists n0 > m0 such that

‖L0(πm0
h)‖lp(n0,∞;Kq) 6

ε

2
‖h‖lp(0,∞;Ks). (14)

Similarly, we can find n0 < m1 < n1 and f1 satisfying

‖f1‖ = 1, support f1 ⊆ [n0 + 1, m1]

and

‖L0f1‖lp(n0+1,n1;Kq) >
1

γ
, ‖L0(πm1

h)‖lp(n1,∞;Kq) 6
ε

22
‖h‖lp(0,∞;Ks).

Continuing this way, we can find the sequences (fk) and nk ↑ ∞, nk−1 < mk < nk having the

following properties

‖fk‖lp(0,∞;Ks) = 1, support fk ⊆ [nk−1 + 1, mk],

(with n−1 = −1, m−1 = −1) and

‖L0fk‖lp(nk−1+1,nk ;Kq) >
1

γ
, ‖L0(πmk

h)‖lp(nk ,∞;Kq) 6
ε

2k
‖h‖lp(0,∞;Ks). (15)

Denote

Qh =

∞∑

k=0

1[nk−1+1,nk]L0([h]mk−1+1),

where 1C denotes the indicator function of the set C. Let f =
∑∞

k=0 fk. By (15) we see that

L0f 6∈ lp(0,∞; Kq). Further,

• support Qfk ⊂ [nk−1 + 1, nk],

• ‖(L0 − Q)h‖lp(0,∞;Kq) 6

∞∑

k=1

‖L0(πmk−1
h)‖lp(nk−1,∞;Kq) 6

∞∑

k=1

ε

2k
‖h‖lp(0,∞;Ks) = ε‖h‖lp(0,∞;Ks),

i.e.,

‖L0 − Q‖lp(0,∞;Kq) 6 ε. (16)

By Hahn-Banach theorem, for any k ∈ N, there exists a linear functional, namely x∗
k, defined

on lp(nk−1 + 1, nk, Kq) such that

‖x∗
k‖ = 1 and x∗

k

(
L0fk

∣∣nk

nk−1+1

)
= ‖L0fk‖lp(nk−1+1,nk;Kq).

We define a sequence of causal operators Ak ∈ L(lp(0,∞; Kq), lp(0,∞; Ks)) by

Akh =
fk+1

‖L0fk‖lp(nk−1+1,nk ;Kq)
· x∗

k(h
∣∣nk

nk−1+1
).

The sequence (Ak) has the following properties

• Ak(L0fk) = Ak(Qfk) = fk+1,

• ‖Ak‖ 6 γ.
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Let

Āh =

∞∑

k=0

Akh.

It is obvious

‖Ā‖ = sup{‖Ak‖ : k ∈ N}.
Therefore, the operator (I − (Q−L0)Ā) is invertible and ‖(I − (Q−L0)Ā)−1‖ 6 (1− εγ)−1. Set

A = Ā(I − (Q − L0)Ā)−1,

z = (I − (Q − L0)Ā)Qf.

We see that

‖A‖ = ‖Āk(I − (Q − L0)Ā)−1‖ 6 γ(1 − εγ)−1
6 δ,

and

(I − L0∆)z =
(
I − (Q − L0)Ā)Qf − L0ĀQf = Q(f − ĀQf

)

= Q

(
f −

∞∑

k=0

∆k

∞∑

i=0

1[ni−1+1,ni]L0([f ]mi−1+1)

)
= Qf0 = 1[0,n0]L0(f0) =: g.

Hence,

(I − L0∆)z = g, (17)

which implies that

(I − L̂0∆F )y = L̂Ag, (18)

where y = L̂Az. From (18) we have Fny(n) = z(n) for any n > n0. Therefore, y 6∈ lp(0,∞; Kq)

because z 6∈ lp(0,∞; Kq) and F is bounded. Moreover, the relation (18) says that y(·) is a

solution of the system

y(n + 1) = Bny(n) + En(∆(F.y(·)))(n) + En(Ag)(n), (19)

with the initial condition y(0) = 0. Put

h(n) := En(Ag)(n).

It is easy to see that h(n) has a compact support. Substituting into the first one we obtain

y(n + 1) = Bny(n) + EnA(F.)y(·))(n) + h(n). (20)

For any m > 0, the equation

x(n + 1) = Bnx(n) + En(∆(F.x(·)))(n), (21)

has a uniquely solution, say x(·, m, x0), with the initial condition x(m; m, x0) = x0. We show

that the sequence (y(n)) defined by

y(n + 1) =

n∑

k=0

x(n + 1, k + 1, h(k)), y(0) = 0. (22)
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is a solution of (20) with y(0) = 0. Indeed,

y(n + 1) =

n∑

k=0

x(n + 1, k + 1, h(k)) =

n−1∑

k=0

x(n + 1, k + 1, h(k)) + h(n)

=

n−1∑

k=0

Bnx(n, k + 1, h(k)) +

n−1∑

k=0

EnA(F.x(·, k + 1, h(k)))(n) + h(n)

= Bny(n, k + 1, h(k)) + EnA(F.

n−1∑

k=0

x(·, k + 1, h(k)))(n) + h(n)

= Bny(n, k + 1, h(k)) + EnA(F.

·−1∑

k=0

x(·, k + 1, h(k)))(n) + h(n).

Therefore,

y(n + 1) = BnPn−1y(n, k + 1, h(k)) + EnA((F.y(·))))(n) + h(n),

i.e., we get (20).

If (21) is globally lp− stable, it follows that

‖y(·)‖lp(0,∞;Kd) =

{
∞∑

n=0

∥∥∥∥∥

n∑

k=0

x(n, k + 1, h(k))

∥∥∥∥∥

p}1/p

6

{
∞∑

n=0

(
n∑

k=0

‖x(n; k + 1, , h(k))‖
)p}1/p

6

∞∑

k=0

(
∞∑

n=k+1

‖x(n; k + 1, h(k))‖p

)1/p

(using Minkowski’s inequality)

6 M10

∞∑

k=0

‖h(k)‖ < +∞.

Hence, it follows that

‖y(·)‖lp(0,∞;Kd) < ∞.

That contradicts to y(·) 6∈ lp(0,∞; Kd). This means that (4) is not globally stable.

Summing up we obtain.

Theorem 3.4. For lp−stability, the complex stability radius and real stability radius are equal and it
is given by

rC(E, A; B, C) = rR(E, A; B, C) = sup
n0>0

‖Ln0
‖−1 .

Corollary 3.5. Let B, E, F be constant matrices and p = 2. Then, there holds 

rC = rR =

{
sup
|t|>1

∥∥∥F (tI − B)−1 E
∥∥∥
}−1

.
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Proof. Since B, E, F are constant matrices, we have

(L0u) (n) = F
n−1∑

k=0

Φ (n, k + 1) Euk = F
n−1∑

k=0

(
k+1∏

m=n

B

)
EukF

n−1∑

k=0

Bn−k−1Euk.

Denote by H(h) the Fourier transformation of the function h. We see that

H (L0u) =
∞∑

n=0

(
F

n−1∑
k=0

Bn−k−1Euk

)
e−inω =

∞∑
n=0

(
F

n−1∑
k=0

Bn−k−1Euk

)
e−inω

=
∞∑

k=0

F

(
∞∑

n=k

Bn−ke−i(n−k)ω

)
Euke

−ikω =
∞∑

k=0

F
(
eiωI − B

)−1
Euke

−ikω

= F
(
eiωI − B

)−1
E

∞∑
k=0

uke
−ikω = F

(
eiωI − B

)−1
EH (u)

=
(
F
(
eiωI − B

)−1
E
)

H (u) = F
((

eiωI − B
)−1
)

EH (u) .

Therefore,

H (L0u) = F
(
eiωI − B

)−1
EH (u) .

Using Parseval equality we have

‖H (h)‖ = ‖h‖
for any h ∈ l2(0,∞; Kq). Hence,

‖L0u‖ = ‖H (L0u)‖ =
∥∥∥F
(
eiωI − B

)−1
E.H (u)

∥∥∥ .

Thus,

‖L0‖ = sup
‖u‖61

∥∥∥F
(
eiωI − B

)−1
E.H (u)

∥∥∥

= sup
‖H(u)‖61

∥∥∥F
(
eiωI − B

)−1
E.H (u)

∥∥∥ = sup
ω

∥∥∥F
(
eiωI − B

)−1
E
∥∥∥ .

Or

‖L0‖ = sup
|t|=1

∥∥∥F (tI − B)−1 E
∥∥∥ .

Since limt→∞ F (tA − B)−1 E = 0,

rC = rR =

{
sup
|t|>1

∥∥∥F (tA − B)−1 E
∥∥∥
}−1

.

The proof is complete.

Example 3.6. Calculate the stability radius of the unstructured system

Xn+1 =

(
−2 1
1 −1

)
Xn ∀n > 0. (23)

The matrix

(
−2 1
1 −1

)
has two eigenvalues λ1 = 1/3 and λ2 = 2/3 which line in the unit ball.

Therefore, the system (23) is asymptotically stable. Further

∥∥(tI − B)−1
∥∥ =

( 9t−2
9t2−9t+2

− 2
9t2−9t+2

− 2
9t2−9t+2

9t−7
9t2−9t+2

)
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We know that ‖(tI − B)−1‖ is the largest eigenvalue of (tI − B)−1 (tI − B)−1 which is

−162t + 162t2 + 61 + 5
√

324t2 − 324t + 97

2(81t4 − 162t3 + 117t2 − 36t + 4)
.

Hence,

sup
|t|=1

∥∥∥(tI − B)−1
∥∥∥ = sup

|t|=1

−162t + 162t2 + 61 + 5
√

324t2 − 324t + 97

2(81t4 − 162t3 + 117t2 − 36t + 4)
=

61

8
+

5

8

√
97.

Thus,

rC = rR =

(
61

8
+

5

8

√
97

)−1

.
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