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1. Land characterization: problems in deriving optimal sampling schemes

Land has many components. The various components, such as vegetation, and in the absence
of vegetation the rocks and sands with all their minerals make up land cover. To adequately
characterize the vegetation components or the mineral components of land, detailed maps
describing the spatial distributions of, for example, certain crops or certain minerals are re-
quired. The spatial distributions of crops or minerals, however, vary from one place to an-
other according to factors at local settings. Therefore, thorough sampling of land is required
to generate detailed maps accurately depicting spatial variability of either crops or minerals
and associated metals. Such an undertaking would require money, time, and manpower in
order to achieve spatial information of interest at the desired level of accuracy. Therefore,
planning where and how many samples should be collected, in order to map accurately the
spatial distributions of either crops or minerals and associated metals, is a non-trivial task.
A sampling plan or scheme refers to positions of samples on the ground. There are two types
of sampling schemes, (a) a retrospective scheme, whereby sample locations are either removed
from or added to an existing sampling scheme, and (b) a prospective scheme, whereby sample
locations are pre-determined before actual sampling in the field. A sampling scheme design
is considered optimal if there is (i) a reduction in the number of samples but resulting in esti-
mates of population parameters of interest with the same or similar uncertainty, (ii) a reduc-
tion in the variability or mean squared error in estimates of population parameters of interest,
(iii) a more correct distribution of samples representing the distribution of the population of
interest, or a combination of these criteria. Development of optimal sampling requires a priori
spatial information about a study area.
Around the mid-20th century and a few decades thereafter, those who studied crops (Driscoll
& Coleman, 1974; Everitt et al., 1980; Johnson, 1969) and those who searched for minerals
(Allum, 1966; Eardley, 1942; Gilbertson et al., 1976; Laylender, 1956; Longshaw & Gilbert-
son, 1976) developed their sampling schemes by using geographical information from topo-
graphic maps and/or stereoscopic aerial photographs and from visual observations during
field reconnaissance surveys. From the 1970s, technological developments in remote sensing
resulted in the collection of spaceborne multispectral data, which were to a larger extent use-
ful to derive a priori spatial information required in sampling campaigns to study agricultural
crops (Everitt et al., 1979; McGraw & Tueller, 1983) but were to a lesser extent useful to de-
rive a priori spatial information required in searching for minerals (Houston, 1973; Iranpanah,
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1977; Lowman, 1976; Siegal & Abrams, 1976; Siegal & Gillespie, 1980). The reasons for the
relative contrast of usefulness spaceborne multispectral data to crop vegetation studies and to
search for minerals are that multispectral sensors collect broad wavelength data (a) mostly in
the visible to near infrared range of the electromagnetic spectrum, where vegetation has diag-
nostic spectral features, but (b) partly in the shortwave infrared range of the electromagnetic
spectrum, where most minerals have diagnostic spectral features. Multispectral data allow
mapping of individual crop species quite accurately (Bouman & Uenk, 1992; Brisco et al.,
1989; Richardson et al., 1985), but allow mapping of groups and not individual minerals such
as in hydrothermally altered rocks (Abrams, 1984; Carranza & Hale, 2002; Kowalik et al., 1983;
Rowan et al., 1977).
From the 1990s, however, advanced technological developments in remote sensing resulted
in acquiring airborne hyperspectral data, which are better sources of a priori information for
those who optimize their respective sampling schemes to study crop vegetation or search for
minerals and associated metals. The advantage of hyperspectral data over multispectral data
can be attributed to their high spatial resolution and much higher spectral resolutions in the
visible to the shortwave infrared regions (Clark, 1999; Polder & van der Heijden, 2001), which
allow distinction between plant species (Chang, 2006; Okina et al., 2001; Thenkabail, 2002;
Thenkabail et al., 2002) or minerals and associated metals (Cudahy et al., 2000; Martini, 2003;
Martini et al., 2003; Papp & Cudahy, 2002). Nevertheless, the ability to process and analyze
multi-dimensional hyperspectral data promptly requires improved or novel techniques in or-
der to extract and then further process vital information to derive optimal sampling schemes.
The availability of airborne hyperspectral data, therefore, raises two problems in deriving op-
timal sampling schemes to study crops and to search for minerals and associated metals: (1)
how to extract accurate a priori information of interest; and (2) how to further process a priori
information of interest to derive an optimal sampling scheme. The first problem is related to
the fact that processing and analysis of hyperspectral data results in only estimates of certain
parameters such as (a) vegetation indices, which could reflect crop health (Ausmus & Hilty,
1972; Carter, 1994; Knipling, 1970), and (b) mineral indices, which are estimates of relative
abundance of minerals (Chabrillat et al., 1999; Crósta et al., 1998; Resmini et al., 1997; Smith
et al., 1985). Accurate estimation of these parameters is undermined by several factors that,
for example, distort the spectral signal from materials of interest on the ground to the hyper-
spectral sensor in the air (Gupta, 2003; Lillesand et al., 1994; Richards, 1993; Sabins, 1996). The
second problem is related to the statistical correlation or spatial association between param-
eters estimated from hyperspectral data and the primary variables of interest, which in this
chapter are crops or minerals and associated metals. To investigate potential solutions to these
two problems in deriving optimal sampling schemes given hyperspectral data, it is important
to first understand hyperspectral remote sensing and optimization of schemes separately and
to then merge the disparate knowledge gained. The following two sections provide brief
literature reviews on hyperspectral remote sensing and optimization of sampling schemes,
respectively.
In this chapter, estimates of parameters of interest derived from hyperspectral data or sta-
tistical correlation between parameters estimated from hyperspectral data and the primary
variables of interest are here referred to as a model. It is hypothesized that model-based op-
timal sampling schemes can be derived by (a) improving the precision/accuracy of a model,
(b) improving the parameter estimates of a model, (c) reducing the variability of a model, (d)
reducing the error of model; or by a combination of any of these aspects. Accordingly, to
investigate the hypothesis, the main purpose of this chapter is to use airborne hyperspectral

data to obtain models for input into simulated annealing in order to derive optimal sampling
schemes.

2. Hyperspectral remote sensing

In the study of electro-magnetic physics, when energy in the form of light interacts with a
material, part of the energy at certain wavelength is absorbed, transmitted, emitted, scattered,
or reflected due to the property or characteristics of the material (Sabins, 1996). The three
most common ways of measuring the reflectance of a material are by (a) using a hand-held
spectrometer over the material in the field or laboratory, (b) using a sensor mounted on an
aircraft over a land terrain, or (c) using a sensor mounted on a spacecraft over the earth’s
surface.
Available hyperspectral data are mostly obtained by aircrafts. Hyperspectral data are re-
flectance measurements at very narrow wavelengths, approximately 10 nm or less, and are
acquired simultaneously over a large spectral range, usually between 0.4 µm and 2.5 µm
(Chang, 2006). This spectral range includes the visible, near infrared and short wave in-
frared regions of the electro-magnetic spectrum, resulting in a large number (often > 100)
of contiguous spectral bands or channels. Reflectance data in each spectral channel can be
pictorially represented as an image, which is composed of discrete picture elements or pixels.
The brightness of a pixel represents the reflective value of materials at specific wavelengths
of the electro-magnetic spectrum. Every material has unique spectral features (Hapke, 1993),
which are distinct arrays of spectral values at certain regions of the electro-magnetic spectrum.
Because hyperspectral sensors acquire spectral data from narrow and contiguous bands of
the electro-magnetic spectrum, they provide much better capability to identify materials than
broad-band sensors (Sabins, 1999). For example, analysis of changes in narrow absorption
features (Van der Meer, 2004), which are usually not recorded by broadband sensors, is a pow-
erful tool in remote identification and estimation of individual materials instead of groups of
materials.
A vast amount of scientific knowledge has been and is currently being developed in the field
of hyperspectral remote sensing of the environment (Chang, 2006; Gupta, 2003; Sabins, 1996).
There are several international peer reviewed journals specifically publishing innovative pro-
cedures and advancements on hyperspectral remote sensing of the environment. Integration
of hyperspectral data or information derived from hyperspectral data into optimization of
sampling schemes has been relatively neglected (Stein et al., 1999).

3. Optimization of sampling schemes

Spatial sampling has been addressed by statisticians for many years. In comparing traditional
sampling schemes Burgess et al. (1981) found that a regular grid results in only slightly less
precise estimates than a triangular grid, for the same sampling density. They concluded that
a small loss of precision or small increase in sampling density to achieve a given precision
corresponds with a small increase in price to pay for the practical convenience of regular
grids. Christakos & Olea (1992) present a case-specific methodology for choosing between
different grid designs.
In optimization of model-based sampling schemes, Spruill & Candela (1990) considered the
prediction accuracy of chloride concentration in groundwater by removing or adding loca-
tions to an existing sampling network. In a similar way, Royle & Nychka (1998) used a geo-
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metrical criterion in order to optimize spatial prediction. Brus & de Gruijter (1997) compared
design-based and model-based sampling schemes.
With applications of geostatistical methods, it has been previously shown that for spatially
correlated data a triangular configuration of sampling points is most efficient and for isotropic
variations the grid should be equilateral (Burgess et al., 1981). McBratney et al. (1981) and
McBratney & Webster (1981) presented procedures for optimizing the spacing grid of a reg-
ular rectangular or triangular lattice design by maximizing the prediction variance, given an
a priori variogram. If a variogram, however, shows a relatively high nugget and sampling
density is relatively scarce, then a hexagonal grid can be most efficient (Yfantis et al., 1987). By
removing or adding locations to an existing sampling network, Ben-Jemaa et al. (1995) used
ordinary co-kriging between sediment concentration of mercury and a sediment grain size in-
dex to maximize the prediction accuracy. Lloyd & Atkinson (1999) used ordinary kriging and
ordinary indicator kriging to optimize a sampling scheme. Diggle & Lophaven (2006) used a
Bayesian criterion to optimize geo-spatial prediction by (a) deleting locations from an existing
sampling design and (b) choosing positions for a new set of sampling locations. Other stud-
ies of variogram application to optimize sampling schemes include Russo (1984), Warrick &
Myers (1987), Zimmerman & Homer (1991) and Müller & Zimmerman (1999).
With applications of simulated annealing, Sacks & Schiller (1988) presented several algorithms
for optimizing a sampling scheme out of a small grid of possible locations. McGwire et al.
(1993) investigated the impact of sampling strategies on the stability of linear calibrations by
enforcing various sample distance constraints in a Monte Carlo approach. Van Groenigen &
Stein (1998) extended this design by presenting the optimal sampling scheme using spatial
simulated annealing that could handle earlier data points and complex barriers. Van Groeni-
gen & Stein (1998) also developed further the Warrick & Myers (1987) criterion to optimize
sampling schemes. Van Groenigen et al. (1999) used spatial simulated annealing to construct
sampling schemes with minimal kriging variance. They found that anisotropy of the vari-
ogram had considerable influence on the optimized sampling scheme, with the highest sam-
pling density in the direction of the highest variability. Van Groenigen et al. (1999) used spatial
simulated annealing and the criterion for minimizing the maximum kriging variance in ob-
taining the optimal sampling scheme. Van Groenigen, Pieters & Stein (2000) showed how con-
ditional probabilities of exceeding environmental threshold values of several contaminants
could be pooled into one variable, indicating health risk and thereby used simulated anneal-
ing to optimize the sampling scheme. Van Groenigen, Gandah & Bouma (2000) used yield
maps to optimize, via spatial simulated annealing, soil sampling for precision agriculture in a
low-tech environment. Lark (2002) maximized the likelihood estimation for the Gaussian lin-
ear model, which results in designs consisting of fairly regular array supplemented by groups
of closely spaced locations.
In sampling for field spectral measurements to support remote sensing, Curran & Atkinson
(1998) used co-kriging to define the optimal ‘multiple’ sampling design, which could be used
to simultaneously sample ground and remote sensing data. Tapia et al. (2005) applied a mul-
tivariate k-means classifier to delineate vegetation patterns from remote sensing data together
with the Van Groenigen & Stein (1998) criterion in order to prioritize the survey to areas with
high uncertainty. In the current chapter, sampling schemes are optimized based on remote
sensing data or remotely sensed information and the application of simulated annealing.

4. Simulated Annealing in context of sampling scheme optimization

Simulated annealing is a general optimization method that has been widely applied to find the
global optimum of an objective function when several local optima exist. Details on simulated
annealing can be found in Kirkpatrick et al. (1983), Bohachevsky et al. (1986) and Aarts & Korst
(1989).
In application of simulated annealing to sampling scheme optimization, a fitness function
φ(S) has to be minimized, depending on the sampling configuration S. Starting with a ran-
dom sampling scheme S0, let Si and Si+1 represent two solutions with fitness φ(Si) and
φ(Si+1), respectively. Sampling scheme Si+1 is derived from Si by randomly replacing one of
the points of Si by a new point not in Si. A probabilistic acceptance criterion decides whether
Si+1 is accepted or not. This probability Pc(Si → Si+1) of Si+1 being accepted can be described
as:

Pc(Si → Si+1) =




1 , if φ(Si+1) ≤ φ(Si)

exp
(

φ(Si)− φ(Si+1)

c

)
, if φ(Si+1) > φ(Si)

(1)

where c denotes a positive control parameter (usually called the temperature in simulated an-
nealing problems). Several cooling schedules are possible to reduce the temperature. At each
value of c, several transitions have to be made before the annealing can proceed, and c can
take its next value. A transition takes place if Si+1 is accepted. Next, a solution Si+2 is de-
rived from Si+1, and the probability Pc(Si+1 → Si+2) is calculated according to an acceptance
criterion (Equation 1).
Through this and related studies it has been observed that when several local optima exist,
as in the case of designing optimal sampling schemes, simulated annealing is superior to
gradient based methods.

5. A prospective sampling scheme

Although for this particular case study, a prospective sampling scheme is designed to target
a specific mineral, the method is not restrictive to either prospective sampling or in the field
of geology (Debba, Carranza, Stein & van der Meer, 2008; Debba et al., 2005). Retrospective
sampling schemes can similarly be designed (Debba et al., 2009; Diggle & Lophaven, 2006).
Also, these sampling schemes can be applied to various other fields of study, for example, to
better estimate certain vegetation parameters (Debba, Stein, van der Meer & Lucieer, 2008).
Hyperspectral imaging systems are useful in identifying individual iron and clay minerals,
which can provide details of hydrothermal alteration zoning (Sabins, 1999) based on specific
absorption features of these minerals. Thorough discussions on absorption features of hy-
drothermal alteration minerals can be found in Clark (1999); Hapke (1993); Salisbury et al.
(1991); Van der Meer (2004). Various mapping of minerals using hyperspectral data can be
found in Crósta et al. (1998); Kruse & Boardman (1997); Rowan et al. (2000); Sabins (1999);
Vaughan et al. (2003).
Surface sampling in the field is often advantageous for starting surveys. Identification of
hydrothermal alteration minerals like alunite, kaolinite and pyrophyllite, from hyperspectral
images leads to a better understanding of the geology and alteration patterns in a region. As
such, the analysis of airborne hyperspectral imagery can aid in selecting follow-up targets on
the ground before fieldwork is performed. In this study, focus is on the mineral alunite as it is
characteristic of hydrothermal alteration zones in the Rodalquilar area in Spain (Arribas et al.,
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1995). Alunite has a distinct spectral signature and is often, although not always, related to
high sulphidation epithermal gold (Hedenquist et al., 2000). The purpose was to guide field
sampling collection to those pixels with the highest likelihood for occurrence of alunite, while
representing the overall distribution of alunite. The method offers an objective approach to
selecting sampling points in order to, for example, create a mineral alteration map. How-
ever, this method can be easily extended to other hydrothermal alteration minerals that have
diagnostic absorption features. Combination of several mineral images can then be used in
classification of the image to create an alteration map.
The present study aims to use the spectral angle mapper (SAM) and spectral feature fitting
(SFF) to classify alunite and obtain rule images. Each pixel in a rule image represents the sim-
ilarity between the corresponding pixel in the hyperspectral image to a reference spectrum.
These rule images are then used to govern sampling to areas with a high probability of alunite
occurring and to intensively sample in areas with an abundance of alunite. This effectively
delineates favorable areas from unfavorable ones and provides an objective sampling scheme
as an initial guideline. The design of the optimal sampling scheme to target these areas of a
particular intense hydrothermal alteration mineral is the objective of this study. Such an opti-
mal sampling scheme defies the conventional methods of mineral exploration, which can be
time-consuming, cost-prohibitive and involve a high degree of risk in terms of accurate target
selection (Srivastav et al., 2000). The study is illustrated with hyperspectral data acquired over
the Rodalquilar area.

5.1 Study area
5.1.1 Geology and hydrothermal alteration of the Rodalquilar area
The area of study is located in the Cabo de Gata volcanic field, in the south-eastern corner of
Spain (Fig. 1), and consists of calc-alkaline volcanic rocks of the late Tertiary. Volcanic rocks
range in composition from pyroxene-bearing andesites to rhyolites. Extensive hydrothermal
alteration of the volcanic host rocks has resulted in formation of hydrothermal mineral zones
from high to low alteration intensity in the sequence: silica (quartz, chalcedony, and opal) →
alunite → kaolinite → illite → smectite → chlorite. Associated with this mineral alteration
are high sulphidation gold deposits and low sulphidation base metal deposits. Gold min-
eralization is located in the central part of the volcanic field within the Rodalquilar caldera.
Arribas et al. (1995) distinguish five hydrothermal alteration zones: silicic, advanced argillic,
intermediate argillic and propylitic.
The silicic zone is dominated by the presence of vuggy (porous) quartz, opal and gray and
black chalcedony veins. Vuggy quartz (porous quartz) is formed from extreme leaching of
the host rock. It hosts high sulphidation gold mineralization and is evidence for a hypogene
event. Alteration in the advanced argillic zone is of two types: hypogene and supergene.
Alunite, often associated with quartz, kaolinite, illite, jarosite and very rarely pyrophyllite, is
the dominant mineral characterizing this zone. The intermediate argillic zone is composed of
quartz, kaolinite group minerals, illite, illite-smectite, and minor alunite, diaspore and pyro-
phyllite. Near the advanced argillic zone, kaolinite is abundant, whereas in the outer zone
closer to the propylitic halo illite-smectite becomes the predominant minerals. The propy-
litic type of alteration is characterized by the presence of chlorite, illite, and smectite. Table 1
presents an overview of the alteration zones and associated alteration minerals. Detection of
such minerals is facilitated in the field by hand-held spectrometers.

Fig. 1. A generalized geological map (modified after Cunningham et al. (1990)) of the Ro-
dalquilar study area showing the flight line (dotted box) and the hyperspectral data (top right
corner and dashed box) used in the present manuscript.

In the Rodalquilar area alunite is associated both with areas of intense hydrothermal alteration
that are host to gold mineralization and with barren supergene altered rocks (Arribas et al.,
1995; Hedenquist et al., 2000).

5.1.2 Data
We use a sub-scene (350 × 225 pixels) of the airborne imaging spectrometer data acquired
by the Hyperspectral Mapper (HyMAP) in July 2003 during the HyEUROPE 2003 campaign
(Fig. 1). HyMAP is a 126-channel instrument that collects data in a cross-track direction by me-
chanical scanning and in an along-track direction by movement of the airborne platform. The
instrument acts as an imaging spectrometer in the reflected solar region of the electromagnetic
spectrum (0.4–2.5 µm). Spectral coverage is nearly continuous in the SWIR and VNIR regions
with small gaps in the middle of the 1.4 and 1.9 µm atmospheric water bands. The spatial
configuration of the instrument accounts for an IFOV of 2.5 mrad along track and 2.0 mrad
across track resulting in a pixel size on the order of 3–5 m for the data presented in this chap-
ter. Due to instrument failure the SWIR 1 detector did not function during acquisition, thus
no data were acquired in the 1.50–1.76 µm window. The HyMAP data were atmospherically
and geometrically corrected using the Atmospheric and Topographic Correction (ATCOR 4)
model (Richter, 1996).
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that are host to gold mineralization and with barren supergene altered rocks (Arribas et al.,
1995; Hedenquist et al., 2000).

5.1.2 Data
We use a sub-scene (350 × 225 pixels) of the airborne imaging spectrometer data acquired
by the Hyperspectral Mapper (HyMAP) in July 2003 during the HyEUROPE 2003 campaign
(Fig. 1). HyMAP is a 126-channel instrument that collects data in a cross-track direction by me-
chanical scanning and in an along-track direction by movement of the airborne platform. The
instrument acts as an imaging spectrometer in the reflected solar region of the electromagnetic
spectrum (0.4–2.5 µm). Spectral coverage is nearly continuous in the SWIR and VNIR regions
with small gaps in the middle of the 1.4 and 1.9 µm atmospheric water bands. The spatial
configuration of the instrument accounts for an IFOV of 2.5 mrad along track and 2.0 mrad
across track resulting in a pixel size on the order of 3–5 m for the data presented in this chap-
ter. Due to instrument failure the SWIR 1 detector did not function during acquisition, thus
no data were acquired in the 1.50–1.76 µm window. The HyMAP data were atmospherically
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Alteration Zone Alteration Minerals
Silicic quartz; chalcedony; opal
Advanced Argillic quartz; alunite; kaolinite; pyrophyllite; illite; illite-smectite
Intermediate Argillic quartz; kaolinite; illite; illite-smectite
Sericitic quartz; illite
Propylitic quartz; illite; montmorillonite
Stage 2 Alunite alunite; kaolinite; jarosite

Table 1. Summary of alteration zones and dominant minerals in the Rodalquilar area (Arribas
et al., 1995).

In support of the imaging spectrometer data, field spectra was collected for some of the
prospective targets during the over-flight using the Analytical Spectral Device (ASD) fieldspec-
pro spectrometer. This spectrometer covers the 0.35–2.50 µm wavelength range with a spectral
resolution of 3 nm at 0.7 µm and 10 nm at 1.4 and 2.1 µm. The spectral sampling interval is
1.4 nm in the 0.35–1.05 µm wavelength range and 2 nm in the 1.0–2.5 µm wavelength range.
The SWIR 2, with a spectral range 1.95–2.48 µm (bandwidth 16 nm), is potentially useful for
mapping alteration assemblages as well as regolith characterization (Abrams et al., 1977; Cu-
dahy et al., 2000; Goetz & Srivastava, 1985; Kruse, 2002; Papp & Cudahy, 2002). HyMAP has
been used successfully to map minerals (Cudahy et al., 2000; Martini, 2003; Martini et al., 2003;
Papp & Cudahy, 2002) and detect faults and fractures (Martini et al., 2003). We reduced di-
mensionality of the data by considering all channels in the spectral range 1.970–2.468 µm. This
spectral range covers the most prominent spectral absorption features of hydroxyl-bearing
minerals, sulfates and carbonates, which are common to many geologic units and hydrother-
mal alteration assemblages (Kruse, 2002). These minerals also exhibit distinctive absorption
features at wavelengths in the partly missing range of 1.4–1.7 µm, a range also affected by the
water absorption features in the atmosphere.
Fig. 2 shows spectral plots of seven of the most prominent alteration minerals in the study area
(Arribas et al., 1995), at a spectral resolution coinciding with HyMAP after continuum removal
was applied. Continuum removal normalizes the respective spectra to enable comparison of
absorption features from a common baseline. The continuum is a function of the wavelength
that is fitted over the top of the spectrum between two local spectra maxima. A straight
line segment joins the first and last spectral data values taken as the local maxima (Clark
& Roush, 1984; Clark et al., 1991). This figure shows differences in absorption features of the
different minerals, in terms of shape, size, symmetry, depth and wavelength position. These
distinct characteristics enable researchers to identify individual minerals from hyperspectral
data. The spectrum of quartz has no distinctive absorption feature (in this spectral range), but
the remaining spectra have distinctive absorption features at wavelengths near 2.2 µm, each
differing slightly in position and geometry.
Alunite was chosen among the seven most prominent alteration minerals in the area (Heden-
quist et al., 2000) because it has distinct absorption characteristics (Clark, 1999; Hapke, 1993;
Salisbury et al., 1991; Van der Meer, 2004), which are recognizable from hyperspectral images
(Crósta et al., 1998; Kruse & Boardman, 1997; Rowan et al., 2000; Sabins, 1999; Vaughan et al.,
2003). Although this study concentrates on one hydrothermal mineral, namely alunite, the
method demonstrated can easily be extended to other minerals of interest. The test image

Fig. 2. Plot of 7 endmembers from USGS spectral library (Clark et al., 1993) for the 30 selected
channels, enhanced by continuum removal.

selected was in an area that was relatively undisturbed through excavation, hence between
2–3 km from the nearest gold mining area as indicated in Fig. 1.

5.2 Methods
The method for obtaining the optimal sampling scheme commences with application of two
classification techniques used, namely, spectral angle mapper (SAM) (Kruse et al., 1993) and
spectral feature fitting (SFF) (Clark et al., 1991) to obtain rule images. The digital number (DN)
values in a rule image represent similarity between each corresponding pixel’s spectrum to a
reference mineral spectrum, resulting in one rule image for each mineral considered. Scaled
weights are then derived from the rule images. These weights are used in a mathematical ob-
jective function (defined in equation 8, see also Van Groenigen, Pieters & Stein (2000)), which
is optimized in relation to the spatial distribution of the georeferenced image pixels represent-
ing a collection of alunite samples in the field. The aim of optimizing the objective function
is to spread the location of the alunite sampling points over the region while targeting pixels
that have a high probability of being alunite. In effect, the location of these samples in the
field will be dense if distributed in areas with an abundance of alunite and where pixels have
a high probability of being alunite. Optimization of the objective function is an exhaustive
combinatorial problem. The complexity of the objective function and the iterative process of
randomly selecting a pixel in the image as a new sampling point replacing an old one from
the collection give rise to many local optima, which is solved through simulated annealing.
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features at wavelengths in the partly missing range of 1.4–1.7 µm, a range also affected by the
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was applied. Continuum removal normalizes the respective spectra to enable comparison of
absorption features from a common baseline. The continuum is a function of the wavelength
that is fitted over the top of the spectrum between two local spectra maxima. A straight
line segment joins the first and last spectral data values taken as the local maxima (Clark
& Roush, 1984; Clark et al., 1991). This figure shows differences in absorption features of the
different minerals, in terms of shape, size, symmetry, depth and wavelength position. These
distinct characteristics enable researchers to identify individual minerals from hyperspectral
data. The spectrum of quartz has no distinctive absorption feature (in this spectral range), but
the remaining spectra have distinctive absorption features at wavelengths near 2.2 µm, each
differing slightly in position and geometry.
Alunite was chosen among the seven most prominent alteration minerals in the area (Heden-
quist et al., 2000) because it has distinct absorption characteristics (Clark, 1999; Hapke, 1993;
Salisbury et al., 1991; Van der Meer, 2004), which are recognizable from hyperspectral images
(Crósta et al., 1998; Kruse & Boardman, 1997; Rowan et al., 2000; Sabins, 1999; Vaughan et al.,
2003). Although this study concentrates on one hydrothermal mineral, namely alunite, the
method demonstrated can easily be extended to other minerals of interest. The test image
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channels, enhanced by continuum removal.

selected was in an area that was relatively undisturbed through excavation, hence between
2–3 km from the nearest gold mining area as indicated in Fig. 1.

5.2 Methods
The method for obtaining the optimal sampling scheme commences with application of two
classification techniques used, namely, spectral angle mapper (SAM) (Kruse et al., 1993) and
spectral feature fitting (SFF) (Clark et al., 1991) to obtain rule images. The digital number (DN)
values in a rule image represent similarity between each corresponding pixel’s spectrum to a
reference mineral spectrum, resulting in one rule image for each mineral considered. Scaled
weights are then derived from the rule images. These weights are used in a mathematical ob-
jective function (defined in equation 8, see also Van Groenigen, Pieters & Stein (2000)), which
is optimized in relation to the spatial distribution of the georeferenced image pixels represent-
ing a collection of alunite samples in the field. The aim of optimizing the objective function
is to spread the location of the alunite sampling points over the region while targeting pixels
that have a high probability of being alunite. In effect, the location of these samples in the
field will be dense if distributed in areas with an abundance of alunite and where pixels have
a high probability of being alunite. Optimization of the objective function is an exhaustive
combinatorial problem. The complexity of the objective function and the iterative process of
randomly selecting a pixel in the image as a new sampling point replacing an old one from
the collection give rise to many local optima, which is solved through simulated annealing.
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5.2.1 Spectral Angle Mapper (SAM) Classifier
SAM is a pixel based supervised classification technique that measures the similarity of an
image pixel reflectance spectrum to a reference spectrum from either a spectral library or field
spectrum (Kruse et al., 1993). This measure of similarity is the spectral angle (in radians) be-
tween the two spectra, where each is an m-dimensional feature vector, with m being the num-
ber of spectral channels. Small angles indicate a high similarity between pixel and reference
spectra. For an image I, the spectral angle θ(−→x ), for −→x ∈ I, is given by

θ(−→x ) = cos−1
(

f (λ) · e(λ)
|| f (λ)|| · ||e(λ)||

)
, (2)

where λ is the wavelength range of the m spectral channels, f (λ) is an unclassified m-dimen-
sional image reflectance spectrum under observation and e(λ) is an m-dimensional reference
spectrum. SAM is directionally dependent, but independent of the length of the spectral vec-
tor, thus insensitive to illumination or albedo effects (Crósta et al., 1998). It is also depen-
dent on the user-specified threshold and wavelength range. The result of using equation 2
are grayscale images (SAM’s Rule Images), one for each reference mineral, with DN value
representing the angular distance in radians between each pixel spectrum and the reference
mineral spectrum (see Fig. 3a). Darker pixels in the rule image indicate greater similarity to
the reference mineral spectra. Further, if this angular distance is smaller than a user specified
threshold, the pixel is assigned to the category of the respective reference mineral, leading to
image classification. This algorithm has been implemented in ENVITM image analysis com-
mercial software.

5.2.2 Spectral Feature Fitting (SFF)
SFF matches the image pixel reflectance spectrum to reference spectrum from either a spectral
library or a field spectrum by examining specific absorption features in the spectrum after
continuum removal has been applied to both the image and reference spectrum (Clark et al.,
1991). Denote the continuum for the image reflectance spectrum as c f (λ) and for the reference
spectrum as ce(λ). The continuum is removed (Clark & Roush, 1984) using

ec(λ) = e(λ)/ce(λ)
fc(λ) = f (λ)/c f (λ)

(3)

where ec(λ) is the continuum removed reference spectrum and fc(λ) is the continuum re-
moved image reflectance spectrum, respectively. The resulting normalized spectra reflect lev-
els equal to 1.0 if continuum and the spectrum match and less than 1.0 in the case of absorp-
tion.
Similarly, the absorption feature depth is defined as

D[ec(λ)] = 1 − ec(λ) = 1 − e(λ)/ce(λ)
D[ fc(λ)] = 1 − fc(λ) = 1 − f (λ)/c f (λ)

(4)

for each spectrum. The absorption feature depth has a unique magnitude and location, both
depending on the mineral and its chemical composition.
Scaling is usually necessary for reference spectra because absorption features in library data
typically have greater depth than image reflectance spectra. A simple scaling function of
the form es

c(λ) = a0 + a1ec(λ), where es
c(λ) is the modified continuum removed reference

(a) SAM classification rule image for alunite. Dark areas indicate smaller angles,
hence, greater similarity to alunite. This figure also shows the location of the field
data.

(b) SFF fit image for alunite. Lighter areas indicate better fit values between pixel
reflectance spectra and the alunite reference spectrum. This figure also shows the
location of the field data.

Fig. 3. SAM and SFF (fit) Rule Images.

spectrum that best matches the image spectra, is useful. For an image I, the scale τS(
−→x ), for

−→x ∈ I, is determined using least squares that gives the best fit to the image spectrum fc(λ)

D[ fc(λ)] = a + τS(
−→x )D[ec(λ)] . (5)
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−→x ∈ I, is determined using least squares that gives the best fit to the image spectrum fc(λ)
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Hence the scale image, produced for each reference mineral, is the image of scaling factors
used to fit the unknown image spectra to the reference spectra. The result is a grayscale scale
image, whose DN value corresponds to τS(

−→x ).
The total root-mean-squares (RMS) errors, τE(

−→x ), was defined as

τE(
−→x ) =

√
1
m ∑

b
(D[ fc(λb)]− D[es

c(λb)])
2 (6)

where λb denotes the wavelength of channel b, b = 1, . . . , m. The result is a grayscale RMS
error image, with DN value corresponding to τE(

−→x ).
The fit image equals

τF(
−→x ) = τS(

−→x )/τE(
−→x ) (7)

providing a measure of how well image pixel reflectance spectra match reference spectra.
A large value of τF(

−→x ) corresponds to a good match between the image spectrum and the
reference spectrum. The fit values are used as a rule image to weigh each pixel to a reference
mineral, namely alunite (see Fig. 3b). This algorithm has been implemented in ENVITM image
analysis commercial software. Further details on SFF can be found in (Clark & Swayze, 1995;
Clark et al., 1992; 1991; 2003).

5.2.3 Sampling
Sampling by simulation annealing requires definition of a mathematical objective function,
called the fitness function.

Fitness function
The Weighted Means Shortest Distance (WMSD)-criterion is a weighted version of the Mini-
mization of the Mean Shortest Distances (MMSD)-criterion (Van Groenigen, Pieters & Stein,
2000). The fitness function is extended with a location dependent weight function that is
scaled to [0, 1], namely, w(−→x ) : I → [0, 1] by

φWMSD(S
n) =

1
N ∑

−→x ∈I

w(−→x )
∣∣∣∣−→x − WSn (−→x )

∣∣∣∣ , (8)

where WSn (−→x ) is the location vector of the sampling point in Sn nearest to −→x , N is the number
of pixels in the image and w(−→x ) is a weight for the pixel with location vector −→x . The weights
express knowledge or assumptions about the occurrence of alunite in some parts of the region
by controlling the sampling density in these areas. Larger weights result in a higher likelihood
of a pixel being selected in the final sampling scheme.
This fitness function also spreads the location of the sampling points over the region classified
as alunite. Since these points on the image are georeferenced, they will appropriately serve as
target points to be sampled in the field. There will be a high probability that the field sample
points suggested are alunite and these points will be spread according to the distribution
of alunite as in the classified image. This achieves the purpose of the study of obtaining a
collection of sampling points in the field that appropriately represent the distribution of the
mineral of interest. A weight function is defined below to meet this objective.
For the weight function, scaled weights are used based on several rule images to guide sam-
pling to areas with a high probability of being alunite and to sample more intensely where

an abundance of alunite occurs. Using SAM’s rule image and SFF’s rule image, derived by
applying equations 2 & 7, thresholds θt and τt

F are selected for SAM and SFF respectively.
Pixels exceeding either of these threshold angles receive zero weight, otherwise the weight is
a function of the spectral angle and the fit value. Higher weights will emerge from smaller
spectral angle between the image pixel reflectance spectrum and reference alunite spectrum,
and a larger fit value between these two spectra. The weight w(−→x ), for each pixel −→x , scaled
to [0, 1] is defined as

w(θ(−→x ), τF(
−→x )) =




κ1w1(θ(
−→x )) + κ2w2(τF(

−→x )) ,
if θ(−→x ) ≤ θt and τF(

−→x ) ≥ τt
F

0 , if otherwise
(9)

where 0 ≤ κ1, κ2 ≤ 1 and κ1 + κ2 = 1. The weight for SAM: w1(
−→x ), for each pixel −→x , scaled

to [0, 1] is defined as

w1(θ(
−→x )) =




0 , if θ(−→x ) > θt

θt − θ(−→x )

θt − θmin
, if θ(−→x ) ≤ θt (10)

and the weight for SFF: w2(
−→x ), for each pixel −→x , scaled to [0, 1] is defined as

w2(τF(
−→x )) =




0 , if τF(
−→x ) < τt

F
τF(

−→x )− τt
F

τF,max − τt
F

, if τF(
−→x ) ≥ τt

F
(11)

where θt is the maximum angle threshold value chosen, θmin the minimum spectral angle
occurring, τt

F is the minimum fit threshold value chosen and τF,max the maximum value.
The weight function if used in the fitness function will be restricted to those pixels with a spec-
tral angle smaller than the threshold chosen and with a fit larger than the chosen threshold.
The probability is largest to select a pixel that is most similar to the alunite reference spectrum,
in terms of both the angle between these spectra and absorption feature fit. The georeferenced
location of each pixel chosen by the algorithm in the final sampling scheme will be a point to
be sampled on the ground.
This weight function (equation 9), is based on two rule images. This can easily be extended to
more than two rule images, by using different proportions κi for each rule image i conditional
on ∑ κi = 1. Also, in terms of the method of SFF, several absorption features could be consid-
ered for a particular mineral, producing a fit image for each feature. These images could be
combined in the same way, thereby increasing the weights of image pixels having a spectrum
similar to the mineral. This in effect increases the probability of the mineral being selected in
the sampling scheme.

5.3 Results
Forty samples were arbitrarily chosen to illustrate the distribution of these points for the pro-
posed sampling scheme. Prior to sampling, isolated segments (< 10 pixels) were removed.
This was performed as there was a high chance that they were a result of noise in the image
and it seemed impractical to sample in such small areas. However, if these are meaningful
targets, with very high probability of alunite, the above procedure can be performed without
removal of these pixels.
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Hence the scale image, produced for each reference mineral, is the image of scaling factors
used to fit the unknown image spectra to the reference spectra. The result is a grayscale scale
image, whose DN value corresponds to τS(

−→x ).
The total root-mean-squares (RMS) errors, τE(

−→x ), was defined as

τE(
−→x ) =

√
1
m ∑

b
(D[ fc(λb)]− D[es

c(λb)])
2 (6)

where λb denotes the wavelength of channel b, b = 1, . . . , m. The result is a grayscale RMS
error image, with DN value corresponding to τE(

−→x ).
The fit image equals

τF(
−→x ) = τS(

−→x )/τE(
−→x ) (7)

providing a measure of how well image pixel reflectance spectra match reference spectra.
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mization of the Mean Shortest Distances (MMSD)-criterion (Van Groenigen, Pieters & Stein,
2000). The fitness function is extended with a location dependent weight function that is
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φWMSD(S
n) =

1
N ∑

−→x ∈I

w(−→x )
∣∣∣∣−→x − WSn (−→x )

∣∣∣∣ , (8)

where WSn (−→x ) is the location vector of the sampling point in Sn nearest to −→x , N is the number
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Pixels exceeding either of these threshold angles receive zero weight, otherwise the weight is
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−→x ) ≥ τt
F

0 , if otherwise
(9)
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θt − θmin
, if θ(−→x ) ≤ θt (10)
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F
(11)

where θt is the maximum angle threshold value chosen, θmin the minimum spectral angle
occurring, τt

F is the minimum fit threshold value chosen and τF,max the maximum value.
The weight function if used in the fitness function will be restricted to those pixels with a spec-
tral angle smaller than the threshold chosen and with a fit larger than the chosen threshold.
The probability is largest to select a pixel that is most similar to the alunite reference spectrum,
in terms of both the angle between these spectra and absorption feature fit. The georeferenced
location of each pixel chosen by the algorithm in the final sampling scheme will be a point to
be sampled on the ground.
This weight function (equation 9), is based on two rule images. This can easily be extended to
more than two rule images, by using different proportions κi for each rule image i conditional
on ∑ κi = 1. Also, in terms of the method of SFF, several absorption features could be consid-
ered for a particular mineral, producing a fit image for each feature. These images could be
combined in the same way, thereby increasing the weights of image pixels having a spectrum
similar to the mineral. This in effect increases the probability of the mineral being selected in
the sampling scheme.

5.3 Results
Forty samples were arbitrarily chosen to illustrate the distribution of these points for the pro-
posed sampling scheme. Prior to sampling, isolated segments (< 10 pixels) were removed.
This was performed as there was a high chance that they were a result of noise in the image
and it seemed impractical to sample in such small areas. However, if these are meaningful
targets, with very high probability of alunite, the above procedure can be performed without
removal of these pixels.
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Fig. 4. Scatter plot of values in rule images obtained through SAM and SFF and the respective
thresholds chosen to represent similarity or fit to alunite.

The DN values, θ(−→x ), from SAM’s rule image in Fig. 3a were used in equation 10 to obtain
scaled weights. We used a threshold, θt = 0.11 radians. Pixels lying left of the 0.11 threshold
(Fig. 4) correspond to positive weights. The resulting scaled weights correspond to a greater
similarity to alunite reference spectrum.
SFF was applied to the alunite reference spectrum, resulting in a scale image and an RMS error
image. The ratio of these images, produces a fit image (Fig. 3b). The bright pixels represent the
best fit to the alunite reference spectrum. The DN values from the fit image, τF(

−→x ), was used
in equation 11 to obtain the weights for SFF using a threshold value of 20 for τt

F. This threshold
was chosen after individual spectral analysis of some pixels and selecting several thresholds.
The values of the rule images of SAM and SFF can be seen in Fig. 4. Pixels in the upper left
quadrant correspond to positive weights. In equation 9 we have chosen κ1 = κ2 = 1

2 .
Table 2 summaries the weights derived by SAM and the weights derived by SFF. From the first
row and first column, 6.5% of the pixels receive zero weight from one classification but weights
larger than zero from the other classification. This can also be seen in Fig. 4 corresponding to
the pixels in the upper right and lower left quadrants. These weights were then combined
using equation 9 and are displayed in Fig. 6. Darker areas have higher weights and hence
greater similarity to alunite reference spectrum in terms of both SAM and SFF. The sampling
result using this weight function is also displayed in Fig. 6. The sample points are distributed
over the alunite region and most of the points are found in the darker areas of the image.

Fig. 5. Weight function: Scaled weights derived using SAM and SFF rule mages for alunite us-
ing their respective thresholds. Distribution of 40 sampling points using the weight function.
Darker areas indicate greater similarity to alunite.
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SAM

0.0 (0.0, 0.2] (0,2, 0.4] (0.4, 0.6] (0.6, 0.8] (0.8, 1.0]

0.0 70603 615 238 84 40 8
(0.0, 0.2] 2546 739 304 126 78 8
(0,2, 0.4] 1183 710 332 111 37 7
(0.4, 0.6] 304 333 156 49 10 1
(0.6, 0.8] 33 42 31 6 1 0
(0.8, 1.0] 4 3 4 4 0 0

Table 2. Weights derived from SAM (column) and SFF (row).Values in the table represent the
number (frequency) of pixels that match in a certain range.

Validation
Ground data collected using an ASD fieldspec-pro spectrometer were used to support the
proposed sampling schemes by validating the SAM classified image and the images of the
weights used in this chapter. Reflectance spectra of 51 ground measurements (see Fig. 3) were
analyzed individually for their alunite content and classified into one of three classes, namely,
“no alunite”, “minor alunite” and “abundant alunite”. Using the ground data of those pixels
classified as alunite or not, the accuracy of SAM is 78% and for SFF is 79%.

5.4 Discussion and conclusion of the study
Designing sampling schemes that target areas with high probability and in greater abundance
of alunite occurring was demonstrated by using a weight function for the WMSD-criterion
as an objective function in simulated annealing. Predefined weights allow us to distinguish
areas with different priorities. Hence sampling can be focused in areas with a high potential
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classified as alunite or not, the accuracy of SAM is 78% and for SFF is 79%.
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of alunite occurring was demonstrated by using a weight function for the WMSD-criterion
as an objective function in simulated annealing. Predefined weights allow us to distinguish
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Fig. 6. Distribution of 40 optimized samples with θt = 0.11 radians and τt
F = 20. Darker

patches in the images indicate sampling points are near to each other. This effectively implies
greater abundance of alunite.

Fig. 7. Distribution of 40 highest weight samples. Darker patches in the images indicate
sampling points are near to each other. This effectively implies greater abundance of alunite.

for the occurrence of a mineral of interest and reduces sampling in areas with low potential.
This effectively reduces time and costs in the field. Randomly selecting points in the image, as
potential sites to sample on the ground, could result in the location of these samples clustered
and/or having a low probability of being alunite. Selecting a collection of sampling locations
that have the highest probability of being alunite could result in the location of most sampling
points clustered in the image (Fig. 7). This implies sampling in a limited area on the ground,
and effectively these samples will not represent the overall distribution of alunite over the
entire study area. In the proposed sampling schemes there is a balance between selecting
samples that have a high probable alunite and the location of samples not to be clustered in

the field. A good sampling scheme will target areas with high probability of alunite and the
distribution of sample points will correspond closely to the distribution of alunite. This means
intensive sampling in the area with an abundance of alunite.
We used the threshold of 0.11 radians for SAM and a threshold of 20 for SFF. The threshold
chosen for SAM in this case can be set higher (similarly the threshold for SFF can be set lower)
to include some pixels with a reflectance spectrum similar to that of other minerals, example
kaolinite and pyrophyllite. This is not considered to be a major problem, as the scaled weights
used by the optimal sampling scheme will be low, thereby reducing the probability of selecting
that pixel’s location as a point to be sampled on the ground.
The weight function uses two rule images, one derived from SAM and another from SFF. A
comparison of the scaled weights derived from SAM and SFF (Table 2), indicates that the
methods for SAM and SFF do not always agree. Only the purest pixels classified as alunite
have positive weights. The advantage of combining SAM and SFF classification methods in
the weights function results in a classified image that is robust for the thresholds and selected
channels. The weights derived from SAM and from SFF were then combined into a single
weight image, which was used for the design of the optimal sampling scheme. A suitable
range for the thresholds has to be known. This can be obtained by observing individual spec-
tra and the purest of these can be selected to train the thresholds. Using the combined weights
from SAM and SFF, sample points can be concentrated in the region with a high probability
of alunite, which are robust against the thresholds selected. The distribution of sample points
corresponds closely to the distribution of alunite (Fig. 6).
The sampling scheme proposed is of interest to (a) exploration geologists for specified target
locations of hydrothermally altered minerals (e.g. alunite) with distinct absorption features,
(b) researchers trying to understand the geothermal system and hydrothermal zones in a spe-
cific region and (c) engineers to better collect field data in relation to flights by improving on
ground truthing and calibration measurements. With the aid of new spaceborne launched
hyperspectral sensors, e.g. Hyperion and ARIES-1, data are available for most regions and
hence will be helpful to geologist’s planning phase of selecting important mineral targets in
the field. The method presented here could result in reduction of time and effort in the field,
but by no means replace the field geologist. It is merely an aid for target selection of minerals
as an initial survey, followed by denser surface sampling of interesting anomalies.
Combination of SAM and SFF rule images thus obtained resulted in robust weights to focus
sampling in areas of high probability of alunite. Sample points are arranged more intensely
in areas with an abundance of alunite. SAM and SFF both lead to a relevant classification of
the study area with respect to alunite, as observed from the rule images and validation of the
rule images using ground measurements.
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