A Generalized Mathematical
Model in One-Dimension

4.1 Introduction

In the previous chapter we derived a stochastic solute transport model (equation (3.2.14));
we developed the methods to estimate its parameters, and investigated its behaviour
numerically. We see some promise to characterise the solute dispersion at different flow
lengths, and there are some indications that equation (3.2.14) produce the behaviours that
would be interpreted as capturing the scale-dependency of dispersivity. However, there are
weaknesses in the model as evident from Chapter 3. These weaknesses, which are discussed
in the next section, are stemming from the very assumptions we made in the development
of the model. One could argue that by relaxing the Fickian assumptions, we are actually
complicating the problem quite unnecessarily. But as we see in Chapter 3 and in this
chapter, we develop a new mathematical and computational machinery at a more
fundamental level for the hydrodynamic dispersion in saturated porous media.

We see that equation (3.2.14) is based on assuming a covariance kernel for the velocity
fluctuations, and the solution is dependent on solving an integral equation (see equation
(3.3.11)). In Chapter 3, the integral equation is solved analytically for the covariance kernel
given by equation (3.3.10) to obtain the eigen values and eigen functions, but analytical
solutions of integral equations can not be easily derived for any arbitrary covariance kernel.
This limits the flexibility of the SSTM in employing a suitable covariance kernel independent
of the ability to solve relevant integral equations. Further, we need to solve the SSTM in a
much more computationally efficient manner, and estimating dispersivity by always
relating to the deterministic advection-dispersion equation is not quite satisfactory.
Therefore, we seek to develop a more general form of equation (3.2.14) in this chapter.

4.2 The Development of the Generalized Model
We restate equation (3.2.14) in the differential form:

dC =S(V (x,t) C(x,t)) dt+S(C(x,t) dB, (1)), (4.2.1)
where df, (1)=0 7, fdb, (1). 422)

We use the same notations and symbols as in Chapter 3. In equation (4.2.2), dg,(t) is
calculated by summing m terms of (\//17 f;db;(t)), and for each eigen function, f;, there is an

associated independent Wiener process increment ( db; (t) ).
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This Wiener process increment is o-correlated in time only, and for a particular point in
time, f,, the Wiener process B(a), f ) generates the Wiener increments db].(ti) for each of

the eigen functions. At another time, t,, B(w,f) generates db,(t,) for each of the eigen

function. However, as the Wiener increments are Gaussian with At variance (see Chapter
2),ie, db,(t) and db(t,) are essentially the same stochastic variable.

The number of terms that need to be summed up, m, has to be determined by considering
the contribution each pair of eigen value 74, and corresponding eigen function f; make to

approximate the covariance.

Instead of solving the integral equation to obtain eigen function, we assume the following
function to be a generalized eigen function. (We will discuss the method to obtain this
function for any given kernel in section 4.3.)

We define,
Pj 2
fi(x) =80+ 812+ 2_gye ) , (4.2.3)
k=2

where f;(x) is the jth eigen function of a given covariance kernel, g,,g,, and g, are

numerical coefficients, 7, and s, are the coefficients in the exponent where k is an

integer index ranging from 2 to p;. p; is determined by the computational method in

section 4.3.

The differential operator is defined by,

h, 0° 0
S =—- 7"72 +— ’
2 ox~ Ox
and the second term on the right hand side of equation (4.2.1) can be written as,

s[c(x,t)é\/fjfjdbj (t)j - aé\/IjS(C(x,t)fj)dbj (1), (4.2.4)

after substituting equation (4.2.2) into the second terms of equation (4.2.1) and taking
\//IT. and db,(t) out of the operand. We can now expand the differential,

S(C(xt)f))= S[C(x,t) (guj tgyxt igkfei%(Hk/)z ]J ~ (4.2.5)

Let us evaluate the derivatives separately;
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a Vk, X =5 :
ax[ (x t)[‘o’o/ +gl]x+zgk] ) D

0 rk] x—sp
:ax{gm (x,t)+ 8, xC(x,t) + ng] x,t)e y } 4.2.6)
GC(x,t) 8C(x,t) ij(xfskj)z
= &8oj o + 81X ox +g1] zgkj ( )

Now the derivative within the summation in equation (4.2.6) is evaluated.

L{e@netT )= un|-an (v-s, )T | ento S

Ox Ox
OC(X,t) | -ryfo-sy)
:{—2rij(x,t)(x—skj)+ax}e .
Substituting this derivation back to equation (4.2.6) and defining, w,(x,t) for eigen
function j,
0 ’kf X “kf)z
W](x’t) ax ('x t) gO] +g]]‘x+zgk] ’
oC(x,t) 6C(x,t) i e
=80T, T8N +8,C( kZ 2rkf(x‘5kf)c(x't) ¢ "’ (4.2.7)

6C(x,t).

i — 1 Jc—s,v2 ~1 ) A]2
:{glj_zégkj rkj(x_skj)e 3 )}C( ) {&]*81]“28@ )} ox

Then taking the derivative of y, (x,t) with respect to x,

oy (x,t i ro(oesy P | OC (8
( )={g”—22gk,.rkj(x—skj)e( >} (x.)
k=2

ox Oox

b 2 —1jj (=8 ’ i =1 (X =5y ’
+{4;—;gkjré(x—skj) ¢ i) —Zk;gkjrkje (=sy) }C(x,t)

F | 0°C(x,t) oC(x,t)

P 2
r,q xX— 9,\] 7 - "k;(’(’%) 4
{801 +gux+ng } P +{81f _222:3@’@("_%)8 } o
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i —1i (X8 ’ 6C xlt Vk X5, 62C x/t
=2{g1j—22gk,-rkj(x—skj)e il ) } (gx ) {g()] +81JX+ng, ' ]) } 63(C2 )
k=2
(4.2.8)
2 Pj iy~ 2
{42gk]rk]( skJ) iy xs) —Zngjrkje (s }C(x,t)
k=2
Therefore, equation (4.2.5) can be expressed as,
O*(C(x,t) f, o(C(x,t) f.
2 ox Ox
h, oy, (x,t)
—y () e D, (4.29)
oC(x,t) 0*C(x,t)
=R, (x)C(x,t)+ P, = P, FREa
Where
o -
POj(x):[gif_Zzgkfrkj(x_skf)e o }
=2
’ (4.2.10)

2 Pj i — 2
( j|:4zgk]rk]( Skj) rk’(Jﬁs‘q) _zkz;gkjrkje /( ) :|I

r,(, x=sy : hr i —1i (x—sy :
P, ( )= ;i +gljx+2gk] J +[2'J{2(gij —2;gkjrkj(x—skj)e j(es) H, (4.2.11)

And

h 7k, X =5y :
By (x) = ( j{gm +g1jx+2gk] }}. (4.2.12)

We see that, in equation (4.2.9), the coefficients, P,(x)(i=0,1,2) are functions of x only.

y

If we recall the premise on which stochastic calculus is discussed in Chapter 2, C(x,t) is a

continuous, non-differentiable function, and equation (4.2.1) should be interpreted as an Ito
stochastic differential, which essentially mean equation (4.2.1) has to be understood only in
the following form:

Clx,t)=[A(C(x,t),t,x) dt+sz x,1),t,x)dw, (4.2.13)

where A(C (x,t),t, x) is the drift coefficient and B. (C( t),t, x) are diffusion coefficients

of the Ito diffusion, equation (4.2.13); here dwi( ) are increments of the standard Wiener

process. Ito diffusion are an interesting class of stochastic integrals and has many
advantageous properties of practical importance (Klebaner, 1998).
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The expression of stochastic partial differential equation (equation (4.2.1)) as an Ito diffusion
in time would give us the mathematical justification in solving it using Ito calculus. In our
development, the eigen functions, f] (x) are continuous, differentiable functions so are the

coefficients, R.].(x)(i =O,1,2). Therefore, the Ito stochastic product rule is the same as the
product rule in standard calculus (Klebaner, 1998), and we employ this fact in the previous
derivations. Further, we assume that the mean velocity V(x,t) is a continuous,

differentiable function which is a reasonable assumption given that the average velocity in
aquifer situation is based on the hydraulic conductivity, porosity and the pressure gradient
across a large enough domain within a much larger total flow length.

Therefore, we can write the drift term of equation (4.2.1) as follows:

-S(V(x,t)C(x,1)) = Mc(x,tyr V(x,t)M

ox ox

hz[ a(x t)c(x t)+26C(x,t) oV (x,t) +V62C(x,t)J

i ’ ox ox ox’
(4.2.14)
_[ov(x, ) h, &V (x,1) 1)+ V(x,t)+h—-‘zav(x't) oC(x,t)
Ox 2 o’ 2 Ox Ox
h - 0’C(x,t)
+2V (x ) — )
5 V() — 5
By substituting equations (4.2.14) and (4.2.9) into equation (4.2.1),
_ = _
[8V(x,t)+hxa V(yzc,t)jc(x’t)+£v(x’t)+hx26V(x,t)]8C(x2,t)
Ox 2 ox 2 Ox Ox
dC(x,t)=— (et
h. — 0°C(x,t
=V (x,t) |—2 2
)=
" oC(x,t) 0*C(x,t)
- BiC(xt)+ P, P, db.(t),
oS5 Rt op, T gy o
and then,
2
4C (x,) = ~C (x yt, - 2C ) gy _OCC) gy (4.2.15)
X Ox
where,

dlo(x,t):( FoRY dt+02\f db.(t), (4.2.16)

V(xt) h, 0 V(x t J
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dI1(x,t):[V(x,t) hz 2av(x ) ]dt az\/’ ,and (4.2.17)

dl, (x,1) = (h xtjdtwif 2P, db ( 4.2.18)

In equation (4.2.15), dl,,dl, and dI, are Ito stochastic differentials with respect to ¢ as

well, and we can rewrite a generalized SSTM given by equation (4.2.1) in terms of another
set of stochastic differentials,

C(x jc x,t)dl, _Iac ) g —jazc(f’t)dl C(x.4). (4.2.19)

We note that dl,dl, and dI, are only functions of the mean velocity, V(x,t) , and
P;(x)(i=0,1,2);and C(x,t) is separated out in equation (4.2.19), which can be interpreted
as C(x,t) and its spatial derivatives are modulating dI,(i=0,1,2)s. I, are Ito stochastic

integrals of the form given by equation (4.2.13), and can be expressed as,
L(x,8)= [E(x,t)dt+ 03[, (x,£)db (£), (,04,2) and (i/Lm), (4.2.20)
j=1

where,

(V) 62V(x,t)j, 4.2.21)

(
F](x,t)—[(x,t)+hx 26‘/(“)], (4.2.22)
(

2 ox
E(x,t)= %V(x,t)), (4.2.23)
Go; =4, P (%), (4.2.24)
Gy =4 P (%), (4.2.25)
and G,; =,[4,P,(x). (4.2.26)

As the stochastic integrals, I l.(x,t) are dependent only on the behaviours of V(x,t) , the
eigen values of the velocity covariance kernel and P;(x) functions, i.e, I,(x,t)s are only

dependent on the velocity fields within the porous media. A corollary to that is if we know
the velocity fields and characterize them as stochastic differentials, we can then
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develop an empirical SSTM based on equation (4.2.19). We explore the behaviours of
I,(x,t)in section 4.5. Next we discuss the derivation of the generalized eigen function, the

form of which is given by equation (4.2.3).

4.3 A Computational Approach for Eigen Functions

We discuss the approach in this section to obtain the eigen functions for any given kernel in
the form given by equation (4.2.3). We calculate the covariance kernel matrix (COV) for any
given kernel function and COV can be decomposed in to eigen values and the
corresponding eigen vectors using singular value decomposition method or principle
component analysis. This can easily be done using mathematical software. Then we use the
eigen vectors to develop eigen functions using neural networks.

Suppose that we already have an exponential covariance kernel as given by,

_y
b

q(x,,x,)=c" e’ , (4.3.1)
where y=|x, -x,|,
b is the correlation length , and
o’ is the variance when x, =x, .

Interms of x; and x,, both of them have the domain of [0,L]; we equally divide this range
into (n) equidistant intervals of ~Ax for both variables. Thus, the particular position for x,

and x, can be displayed as:
x,=kAx, fork=0,1,2,---, n,and (4.3.2)
xzj:ij, forj=0,1,2,-, n. (4.3.3)

By substituting equations (4.3.2) and (4.3.3) into equation (4.3.1), we can obtain,

[k a4

cov(k,j)=c* e * for kje[1,n-1]. (4.3.4)

In equation (4.3.4), COV is the covariance matrix which contains all the variances and
covariances, and it is a symmetric matrix with size nxn where n is the number of
intervals. The diagonals of COV represent variances where x, is equal to x, and off-

diagonals represent covariances between any two different discrete x, and x, .

After the covariance matrix is defined, we can transform the COV matrix into a new matrix
with new scaled variables according to Karhunen-Loéve (KL) theorem. In this new matrix,
all the variables are independent of each other having their own variances. ie, the
covariance between any two new variables is zero. The new matrix can be represented by
using the Karhunen-Loéve theorem as,

CcovV1= 21 2,6,(x)4,(x), (4.3.5)
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where 7 is the total number of variables in the new matrix; A.

; represents the variance of the

i™ rescaled variable and A; is also the i™ eigen values of the COV1 matrix; and #;(x) is

the eigen vectors of the COV1 matrix. The number of eigen vectors depends on the number
of discrete intervals. This decomposition of the COV1 matrix which is called the singular
value decomposition method can easily be done by using mathematical or statistical
software.

Once we have the eigen vectors, the next step is to develop suitable neural networks to
represent or mimic these eigen vectors. In fact, it is not necessary to simulate all the eigen
vectors. The number of neural networks is decided by the number of eigen values which are
significant in the KL representation. In some situations, for example, we may have 100 eigen
values in the KL representation but only 4 significant eigen values. Then, we just create four
networks to simulate these four eigenvectors which correspond to the most significant eigen
values. The way we decide on the number of significant eigen values is based on the
following equation:

Rlil=-% for ie[ln], 43.6)
24
j=1
Th =¥ R[i], 43.7)

where R[i] represents the contribution of the i" eigen value in capturing the total original
variance, k represents the number of the significant eigen values, and Th is the
contribution of all significant eigen values in capturing the total original variance. In this
chapter, Th is chosen to vary between 0.95 and 1. This means that if the total number of
eigen values is 100 from the KL expansion and the contribution of the first 4 eigen values
takes up more than 95% of the original variance, there are only four individual neural
networks that need to be developed.

The main factors that need to be decided in the development of neural networks are the
number of neurons needed, the structure of neural networks and the learning algorithm.
The number of neurons in neural networks is case-dependent. It is difficult to define the
number of neurons before the learning stage. In general, the number of neurons is adjusted
during training until the network output converges on the actual output based on least
square error minimization. A neural network with an optimum number of neurons will
reach the desired minimum error level more quickly than other networks with more
complex structures. The proposed neural network is a Radial Basis Function (RBF) Network.
The approximation function is the Gaussian Function given below:

G(s,r)=e" &, (4.3.8)
where r and s are constants. In this symmetric function, s defines the centre of
symmetry and r defines the sharpness of Gaussian function.

Based on numerical values of the significant eigen vectors, several RBF networks with one
input (x) and one output (eigen vector) are developed to approximate each significant
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eigenvector. Now let us have the following function the form of which is previously given in
equation (4.2.3) to define the RBF network,

p+1 p+1
P)=8y+ 8 x+ D g e T =g 4 g x+ D 2, Gls,, 1) (4.3.9)
k=2 k=2

where g, is the bias weight of the network, ¢, and g, isthe 1% and k™ weight of the
network, and p is the total number of neurons in this RBF network (the reason for using
p+1 for the summation is that k starts at 2). Figure 4.1 displays the architecture of a neural
network for the case of one-dimensional input and ¢(x) is used to represent the output of

the neural network given by equation (4.3.9).

After we decide the input-output mapping and architecture of deterministic neural
networks, the next step is to choose the learning algorithm, i.e., the method used to update
weights and other parameters of networks. The backpropagation algorithm is used as the
learning algorithm in this work. The backpropagation algorithm is used to minimize the
network’s global error between the actual network outputs and their corresponding desired
outputs. The backpropagation leaning method is based on gradient descent that updates
weights and other parameters through partial derivatives of the network’s global error with
respect to the weights and parameters. A stable approach is to change the weights and
parameters in the network after the whole sample has been presented and to repeat this
process iteratively until the desired minimum error level is reached. This is called batch (or
epoch based) learning.

@x) (=)

g1x

Figure 4.1. Architecture of the one-dimensional RBF network given by equation (4.3.9).

Their values are based on the summation over all training examples of the partial derivative
of the network’s global error with respect to the weights and parameters in the whole
sample.
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Now let us assume that the actual network outputis T ( ¢(x)), the desired network output

is Z (@(x)). The network’s global error between the network output and actual output is

1 Y 2
E=—>(T-2), 4.3.10
2 (1-2) @310)
where T, and Z, are the actual output and the network output for the i" training

pattern, and N is the total number of training patterns. The multiplication by 1/2 is a
mathematical convenience (Samarasinghe, 2006).

The method of modifying a weight or a parameter is the same for all weights and
parameters so we show the change to an arbitrary weight as an example. The change to a
single weight of a connection between neuron j and neuron i in the RBF network based on

batch learning can be defined as,

k([ dE
Ag; :qZ(dJ , (4.3.11)
p=1\ 48 )

where 7 is called the learning rate with a constant value between 0 and 1. It controls the

step size and the speed of weight adjustments. k is the total number of input vectors. The
process that propagates the error information backwards into the network and updates
weights and the parameters of network is repeated until the network minimizes the global
error between the actual network outputs and their corresponding desired outputs. In the
learning process, the weights and the parameters of the network converge on the optimal
values.

To illustrate the computational approach, we give some examples here. The first covariance
kernel is chosen to be
y

g(x,,x)=0%¢e !, (4.3.12)

2
where y=|x, —x,

7
b is constant , and
2 . . _
o” isvariance when x, =x,.

This covariance kernel needs a relatively lower number of significant eigen values to capture
95% or more of the total variance; therefore we choose to work with this kernel and later we
use two other forms of kernels: one discussed previously in Chapter 3 and other one is
empirically based.

Figure 4.2 displays the covariance matrix based on the covariance kernel (equation (4.3.12))
when ¢*=1 and b=01.

Table 4.1 reports all eigen values in the KL representation of the covariance matrix. The
most of the eigen values is equal to zero and these eigen values can not affect the covariance
matrix and just a few are significant and capture the total variance in the original data.
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Therefore, we need to focus on the significant eigen values as well as their corresponding
eigen functions. There are 6 significant eigen values whose contribution takes up 99.9035%
of the original variance and table 4.1 shows the value of each significant eigen value and the
proportion of variance captured by the corresponding eigen value.

Thus, the six eigenvectors corresponding to the significant eigenvalues are simulated by the
individual RBF network. Although we use a different RBF network to approximate each of
these six eigenvectors, the structure of RBF network is the same but the weights and
parameters inside the individual RBF network are different.

Figure 4.2. The covariance matrix calculated by the given covariance kernel (equation 4.3.12)
when ¢’ =1andb=0.1.

The number of eigen values Values Contribution as a propotion
A 48128 0.477
A 30.636 0.303
A 14.692 0.145
A 5.446 0.054
A 1.61 0.016
A 0.392 0.004

Table 4.1. Significant eigen values obtained from the KL expansion of the covariance kernel
given by equation (4.3.12) (six significant eigen values take up 99.9035% of total variance)
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Then each individual RBF network was trained to learn their related eigen vector, while the
weights and all the parameters of Gaussian functions were updated until each network
reaches global minimum error given by

E=——>[a®-5(] . (4.3.13)

where S (x) is an approximation to ¢, (x), i th eigen function; and N is the total number of
eigen values.

Figure 4.3 displays all the six eigen functions and Table 4.2 gives their functional forms.
Figure 4.3 shows the eigen functions given by the KL theory (dots), obtained by solving the

corresponding integral equation, overlaid with the outputs from the neural networks (lines),
and the approximation functions are the same as the theoretically derived functions.

wilx)

0.2 ——

0.1

Figure 4.3. The approximated six eigen functions from BRF networks for equation (4.3.12)
when o°=1 and b=0.1.

For the second example, we use the same covariance kernel with b=02and ¢’ =1, and

decomposed the matrix for the domain [0, 1]. Figure 4.4 shows the covariance matrix
calculated by the given covariance kernel. Based on the standard of choosing the number of
significant eigen values, it can be seen that five significant eigen values together capture
99.9582% of the original variance. Thus, there are five RBF networks to be developed for the
corresponding eigenvectors. Table 4.3 gives the value of each significant eigen value and the
proportion of variance captured by the corresponding eigen value; Table 4.4 provides the
eigen functions obtained from the neural networks; the graphical forms of the eigen
functions are given by Figure 4.5. As before, the analytically derived eigen function as an
very well approximated by the approximations from the neural networks. (The theoretical
eigen functions are not displayed in Figure 4.5).
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Eigen values  Values The analytical forms of eigen functions (¢,(x)) for xe[0,1]
4 48.128 0.0456723 —1.61025x 1072 x — 0.170974 ¢ 23049 (x-05)*
0.689211 - 0.560102 x — 0.360116 ¢ 33762 (x-0.290915)°
12 30.636 —0.745057 ¢ 256631 (x+0.335246)2
~0.00132933 + 0.0185462 x — 3.7566 ¢ ©¢217 (x-0703168)*
ﬂ? 14.692 +3.7712 676.6592()(70.683601)2 —0.183884 e—9.56556(x—0.0999343)2
10.4236 — 5.90955 x — 0.3771 ¢ 134883 (x-068%3)*
A 5.446 ) ! )
+0282871 e—l4.60]6(x—0.306358) _ 128992 6—0.38:7895 (x+0.699959)
0.0403405 —3.13566x 10™ x +9.47326 ¢ 57346 (+-0727565)*
15 1.61 +19.0735 e—8.41938(x—0.5)z ~31.1501 e-5.57596(x-u5)2
1+9.47326 6—8.95446(x—0.272435)1
—0.318516 +0.548883 x + 127.699 ¢ 7084 (x- 06574
],6 0.392 —429.099 ¢ 557986 (x—0.511944)* +237.989 53708 (x-0.46363)2

188.8309 818627 (x-043359%) 2

Table 4.2. The final formula from the developed RBF networks to approximate

significant eigen vector and their corresponding eigen values.

Figure 4.4. The covariance matrix of equation (4.3.12) when o¢*=1 and b=0.2.

each
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Eigen values Values Contribution as a proportion
] 61.242 0.606
4 28.820 0.285
A 8.747 0.087
A 1.853 0.018
As 0.29597 0.00293

Table 4.3. Relative amounts of variance in the data captured by each significant eigenvalue
obtained from the KL expansion of equation (4.3.12) when o&* =1and b=0.2.

Eigen values Values  The analytical forms of eigen functions (¢,(x)) for x[0,1]

A 61.242 0.0179462 —7.11262x 1077 x —0.137587 ¢ 218 (x-05

0.000620869 —0.00124174 x — 0.147148 ¢ %7 (-05206%)°
—0.147148 ¢ 4387 (x-0.179304)?

A 28.820

~0.201764 —3.67217 x 10 x +0.197208 ¢ 134524 (+-0.6258%)°

& 8.747 2
+0.197207 ¢ 134824 (x-0374103)

4 0.0357425 —0.0604364 x —176.588 ¢™>516% (+—0555600)°

4 1.853 131015 ¢ 3T (0S| 6 (19 g3 (x-04597)"

ya 0p0sgy | ~0195412-0.641926 x + 0834518 112257 (v 0526432

+0.479846 e-lzmsgz(.«-0.212252)2 —0.649793 6-14.9973 (x+0.226353)?

Table 4.4. The eigen functions from the developed RBF networks to approximate each
significant eigen vector for the kernel given by equation (4.3.12) when &> =1 and b=0.2.

wilx)
0.2 4 —am
01f e T / e y(%)
;,r \-.\ ',f' .«‘“f | &:(%)
tL . 7oz % 08 (.;,s’ R R
-0.1 }?‘ - s i o @5(X)

-0.2 !

Figure 4.5. The approximated six eigen functions from BRF networks for equation (4.3.12)
when ¢°=1 and b=02.

From the previous two examples, we have seen that the covariance kernel given by equation
(4.3.12) provides a relative small number of eigen functions and therefore one may say that
the kernel given by equation (4.3.12) has fast convergence. This is quite a desirable property
to have, especially in terms of computational efficiency of the algorithms. In the next
example, we find the eigen values and the eigen functions of the covariance kernel we use in
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the development of the SSTM in Chapter 3. In Chapter 3 the covariance kernel given by
equation (4.3.14) - we reproduce the equation here- constitutes an integral equation which
we solve analytically to obtain eigen values and eigen functions:

x|

g(x,x,)=0"e b , (4.3.14)

when o° and b have the same meanings as before.

This covariance kernel is depicted graphically in Figure 4.6.

Figure 4.6. The covariance matrix calculated by the given equation (4.3.14) under the
condition o’ =1.

Eigen values Values Contribution as a proportion
A 18.745 0.186
2 15.681 0.155
2 12.218 0.121
A 9.241 0.091
As 6.976 0.069
Ag 5.332 0.053
A, 4.149 0.041
N 3.293 0.033
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2 2.661 0.026
Ao 2.188 0.022
An 1.826 0.018
A 1.545 0.015
A 1.323 0.013
A 1.145 0.011
s 0.9999 0.0099
e 0.881 0.0087
Ay 0.782 0.0077
g 0.699 0.0069
Ao 0.628 0.0062
oo 0.568 0.0056
Ay 0.516 0.0051
Ay 0.471 0.0047
Ao 0.432 0.0043
Ao 0.398 0.0039
s 0.367 0.0036
g 0.341 0.0034
Ay 0.317 0.0031
Aog 0.295 0.0029
oo 0.276 0.0027
Ao 0.259 0.0026
Ay 0.244 0.0024
s 0.229 0.0023

Table 4.5. The eigen values for the kernel given by equation (4.3.14) (32 significant eigen
values which take up 94.29% of original variance)
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In Table 4.5, we give the 32 eigen values which capture up to 94% of the only original
variance; Table 4.6 gives only the first six eigen functions obtained from the networks for
brevity. Figure 4.7 shows the first eight eigen functions.

Eigen

i Values The analytical forms of eigen functions (¢(x)) for xe[0,1]
values
. . +7. X 7 x -0, et 5)2
4 18.745 0.238941 +7.92548 x 107 x - 0.368191 ¢
0.128953 — 0.257905 x + 0.23274 ¢ 37 (052092
1’2 15.681 ~0.23274 6—5.79605(x—0.169048)2
0.297969 +0.071349 x —1.99033 ¢ >4 (004
13 12.218 +1.74606 677'13097(“0'592419)2 ~ 0339719 e710.6256(xf00883508)2
P ~0.520716 +0.848337 x — 182,653 ¢ > (-0’
* 9.241 +214.465 675(:606‘1 (x-0.603547)2 _38.6999 €,6 81302 (x0.448057)°
ﬂ 6.976 ~1.10289 + 1.12328 x 1010 x —55.2051 6—9.19718 (x-0.611767)2
5 .

)2

+99.6664 e*7.12542(x—0.5)2 _ 55,0057 ¢ 2178 (0353
822.58 —496.01 x — 6.74448 8717.354@,0_590219)2
ﬂe 5.332 -190.785 6’4883()(70.215442)2 4 2539 05 p 1% (x-0.0783536) %
-3181.28 e430206(x+0.0105042)2
-2.16846 +0.148883 x +1451.69 6714'2085(%059%57)2
/17 4.149 -2198.81 6713.3089”—().577832)2 L 1013.85 O —
358,054 ¢ 1135 (x-03w0s15)’
7318294 - 108195 X+ 625559 879.37143(,{,0813402)2
18 3293 _794131 e—&.sselé(;—u.&uﬂeﬂz + 183853 675.03775 (PU%B%S)Z
_D8D.847 ¢ 133 (¥-0.3499)% +52.6999 ¢ 2 (x-0307475)°

Table 4.6. The final formula from the developed RBF networks to approximate the first 8
significant eigen vectors and their corresponding eigen values.
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iy
"
L
-

Figure 4.7. The approximated first eight eigen functions from RBF network for the equation
(4.3.14) when o’=1 and b=01 .

We can also use an empirically derived covariance kernel. As an example, let us consider
equation (4.3.15).
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—|x, —x,|+1  for  0<|x;—x,|<05
Cov(x,,x,) = —g( |x, —x,|-0.8) for 05<|x,—x,/<08, (4.3.15)
0 for  08<|x; —x,|<1

Equation (4.3.15) is depicted in Figure 4.8, and Figure 4.9 shows the corresponding
covariance matrix.

Table 4.7 gives the most significant eigen values (the first nine values); Table 4.8 shows the
functional forms of eigen functions and Figure 4.10 shows the graphical forms of eigen
functions.

COVixy.xg)
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0.8}

0.6 |

02 04 0.6 0.8

Figure 4.8. An empirical distribution.
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Figure 4.9. The covariance matrix given by the empirical distribution (equation (4.3.15)).
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Eigen values Values Contribution as a proportion
A 66.022 0.6537
A 24.216 0.2398
Zs 3.163 0.0313
A 1.989 0.0197
A 0.447 0.0189
A 0.445 0.00443
4 0.395 0.0044
A 0.390 0.00391
A 0.201 0.00386

Table 4.7. Relative amount of variance in the data captured by each significant eigen value for
the kernel in equation (4.3.15). (9 significant eigen values capture 98% of original variance)

Eigen values Values The analytical forms of eigen functions (¢,(x)) for x[0,1]

4 66.022  0.0495323 +3.28499 x 107 x — 0165441 ¢ ¥ 0%
—0.0156028 +0.0312062 x + 0127272 ¢ 7 (- 0162

& 24216 :
-0.127273 eﬂ333761 (x—0.0483079)

—672.733 + 332.866 x + 1.19376 x 107 ¢ 1 (-+037412)°
ﬂ’& 3163 _160589 x 1076418071% (~\‘>03754(>8)Z
412218 x 10° o078t (xr0379503 2

93.5157 —68.0722 x — 813.179 ¢ >/ (¥-00967842)°

A 1.989 : 7 Z
+1577.84 ¢ 315124 (x-0.0721231) —860.897 ¢ 2.33563 (¥ ~0.0182454)

4.82583 — 4.6287 x — 1.32608 ¢ 3% (x—062195 ¥

A5 0.447 i » 2
7473704 64.3|785(V+0023U752) _ 0196755 efl74437 (x+0.074625 )

—9.87408 x10” +3.76629 x10° x
+1.39729 x 10° 672.78874(171.40277)2
+4.53545 x 107 ¢ 17005 (-0 688669)°

A 0.445 341918 x 10° ¢ 0360088 (x—-0s068)°
+3.84429 x 10° ¢ "7 0.405528)*
+1.13264 x 10 e’Z'Ox493(X*0.]3966])Z
+1.06435 x 107 ¢ > +0336545)
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—2.02737 —7.9356 x — 5263.75 ¢ ¥ (-0’
+1.03168 x 107 ¢ > (x-0765634)°
/17 0.395 —7.83776 x 107 3’2600\17(%0764335)2
+6.80653 x 107 ¢ " (x-0.764145)%
+4.26386 37450902("’0"32‘8)2 1 0.388207 ¢ 5! (x-0.100811)°

386986 + 334630 x + 1.13814 x 10° ¢ > (06062’
)2

7152714 x 108 873.99793 (x—-0.630907

+8.57437 x 10° 672.777(3'—0.591124)2 1702189 657-3322(x4157722)Z
/‘{8 0390 _5 31436 % 107 67243237(.:—0572872)2

5. 2
46.4929 x 10° ¢ >4 (039157
)2

+1.62219 x 10° ¢ 113 (x-0.0920272

2

6589.2 +102.051 x — 277640 ¢ *1* 087
~151130 673.04348(#0528018)2 +1.6007 x 107 675'70678("’0480254)2

-1.67931 x 107 6’5-91597(%0.47122)2
% 0.201 2

+2.8962 x 10° 6’8'42978 (x-0395813)

-1.79879 x 10° e*‘-56143(x41.388545)2
)2

_D5798.] ¢ %770 (x-0.288557

Table 4.8. The final formulas from the developed RBF networks to approximate each
significant eigenvector and their corresponding eigen values.
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Figure 4.10. The approximated nine eigenfunctions from the BRF networks for the kernel
given in equation (4.3.15).

We have seen that some covariance kernels provide relatively small number of significant
eigen values for the given domain [0,1] and whereas for others, obtaining the significant
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eigen functions could be tedious. The main point in this exercise is to show that any given
covariance kernel can be used to obtain the eigen functions of the form given by equation
(4.2.3). A corollary to this statement is that if we express the eigen functions in the form
given by equation (4.2.3), then we can assume that these is an underlying covariance kernel
responsible for these eigen functions. In deriving the SSTM in the form of equation (4.2.15),
we assume that the form of equation (4.2.3) is given. But we see now that any covariance-
kernel driven SSTM can be represented by equation (4.2.15).

4.4 Effects of Different Kernels and 7,

We have seen in sections 4.2 and 4.3 that the SSTM developed in Chapter 2 and 3 can be
recasted so that we could employ any given velocity kernel. In fact, we can even use an
empirical set of data for the velocity covariance. We can anticipate that the generalized
SSTM would behave quite similar to the one developed in Chapter 2 given that same
covariance kernel is used. We compute the 95% confidence intervals for the concentration
breakthrough curves (concentration realizations) at x = 0.5 m when the flow length is 1 m
to compare the differences that occur in using different kernels in the generalized SSTM. The
mean velocity is kept constant at 0.5 m/day, and the covariance kernel given by equation
(4.3.14) is used to obtain Figure 4.11, and Figure 4.12 is obtained by employing the kernel,
()

oc’e . First, the confidence intervals shown in Figure 4.11 are very similar to those
ones could obtain by using the SSTM developed in Chapter 2. Comparing the effects of the
kernels on the behaviours of the generalized SSTM, we see that the confidence interval
bandwidth in Figure 4.12 is almost non-existent. The reason is that the kernel used has a
faster convergence when decomposed in the eigen vector space. For smaller values of o,
the randomness in the concentration realization are minimal but as o is increased, we see
increased randomness in the realizations. This also allows us to use the kernel used in
Figure 4.12 for larger scale computations. We conclude that the choice of the velocity
covariance kernel has a significant effect on the behaviour of the generalized SSTM
increasing the flexibility of the SSTM.

The Kernel 1 The Kernel 2
o’ b Cov(x,,x,) =0’ 87@ Cov(x,,x,) =0’ 67@

D, a D, a
0.0001 0.1 0.02305 0.04611 0.02460 0.04921
0.001 0.1 0.02699 0.05199 0.02513 0.05025
0.01 0.1 0.03059 0.06117 0.02782 0.05361
0.1 0.1 0.06852 0.13705 0.06407 0.12815

Table 4.9. Comparison of the dispersivity values for the two kernels.
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We investigate the effects of the kernels on the dispersivity values; we compute them using
the stochastic inverse method (SIM) discussed in Chapter 3. Table 4.9 shows the results. For
all practical purposes they are essentially the same. The mechanic of dispersion is more
influenced by o for a given b or if both ¢° and b are allowed to vary, on both &°
and b . The mechanics of dispersion in general can also be assumed to be influenced by the
mathematical form of the kernel. The both of these kernels are exponential decaying
functions. Because of the case of computations, we continue to use kernel 2 in Table 4.9 in
the most of the work discussed in this book.

C
l -
._....l_‘.__l_._._,..I'.'.'."I-I--I-I--I"-'.'I
0.1
0.
0.
0.
t {days)
0.5 1 1.5 2 2.5 3

Figure 4.11. The generalized SSTM 95% confidence intervals for the concentration
x|

realization for the kernel, c*e ° when o?=0.1and b=0.1.

P PR P T T 1 P T R TR R RN S SR SR T N S T PR 1 t
0.5 1 1.5 2 2.5 3

Figure 4.12. The generalized SSTM 95% confidence intervals for the concentration
(= -Xz)z

realization for the kernel, c>e ° when ¢?=0.1and b=0.1.
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4.5 Analysis of Ito Diffusions I, (x,t)
We have developed the Ito diffusions I,(x,t) in section 4.2 (see equation (4.2.20)), and we

rewrite the diffusions in the differential form:

dl,(x,t)=F (x,t) dt+o-ZG (x,)db;(t), for (i=0,1,2) and (j=1,.,m).  (451)

In equation (4.5.1), F/(x,t) are given by equations (4.2.21), (4.2.22) and (4.2.23), which can
be considered as regular continuous and differentiable functions of x and ¢ because we

assumed the mean velocity ( (x t)) to be a continuous, differentiable function with finite

variation in the development of the SSTM.

For many situations, we can assume (V(x,t)) to be a function of x alone, and some

regions of x it can be considered as a constant. G;’s are continuous differentiable

functions of x only, with finite variation with respect tox (see equations (4.2.24) to
(4.2.26)). Therefore, for a fixed value of x, we can write equation (4.5.1) as,

dl,, () =F, (t)dt +03 G, ,db (), (i=0,1,2) and (j=1,..,m). (452
j=1
From the derivation of equation (4.2.19), we see that the dbj(t)s are the same standard

Wiener process increments for each I, and each db,(t): equation (4.5.2) is a diffusion in

m dimensions, and we can write L(t) as a multidimensional stochastic differential
equation (SDE) (Klebaner, 1998).

In coordinate form we can write,
dl,;(t)=F(t)dt+0[G,, G, G, ] . (4.5.3)

In matrix form, we can write,

dI (t)=Edt+0G,dB(t) (4.5.4)

Gx,Ol Gx,OZ Gx,Om
When’ Gx = Gx,ll Gx,12 Gx,lm 4
Gx/Zl Gx,ZZ Gx,Zm

3xm
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db, (t)
db, (¢
dB = ,
db, (t)_ mx1
Fx,Uﬁ
Ex = Fx,l
E{,Z_
The drift and diffusion coefficients of the multi-dimensional SDEs are vector F, and the
matrix oG, is independent of ¢, and the drift coefficient E, can also be assumed to be

independent of ¢ in many cases. Therefore, equation (4.2.4) is a linear multi-dimensional
SDE. The associated with this SDE, the matrix a called the diffusion matrix can be defined,

a=(0G,)(cG,)' (45.5)

when superscript T indicates the transposed matrix. Under the conditions such as the
coefficients use locally Lipschitz, equation (4.5.4) has strong solutions (see Theorem 6.22 in
Klebaner (1998)).

The diffusion matrix, a,is important to obtain the covariation of I :
d[ 1,1, ()= dr,(t)dI,(t) = ayt, (4.5.6)

c?Y G2, ifi=j
K=1
when, %7] 7 i=0,1,2, and j=0,1,2.
o ZGLMGL% if i#]
K

=1

a is a symmetric matrix.

In obtaining equation (4.2.6), we employ the fact that independent Brownian motions have
quadratic covariation. The most important use of quadratic covariation is that we can
determine the movement of I (t) with respect to time using the following well known

results for Ito diffusions, which are also continuous Markov processes. It can be shown that,
for an infinitesimal time increment,

E(1,,(t+4)~1,, (1)) = E, A +O(a), 5)

E{(Ix,i (t+A)-1,, (t))(Ix,j (t+A)-1,; (t))

L, (H] =a,a+0(a), (4.5.8)
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and when i=j, equation (4.6.8) becomes,

E{(L.(t+2)-1,,(1))

As the solution to the SDE equation (4.5.4) exists, from equation (4.5.8) it is seen that F, is

2

L, (t)} =a,A+0(4), 45.9)

the form of I at time f, and a is the coefficients in the covariance of the infinitesimal
displacement from I,. Using those results we can construct the realizations of I (t) by
using the fact that I (t) are Gaussian processes. By dividing a given time interval into
equidistant infinitesimal time interval, A, we can generate normally distributed dI,

increments for a given x, using the mean and variance obtained by equations (4.5.7) and
(4.5.9). It should be noted that in generating the standard Wiener process increments, we use
the zero-mean and A -variance Gaussian increments.

Wetake I (#)=0 when t=0 because

=x

L(t)=[E(t)dt+o] G, (t)dB(t). (4.5.10)

Figure 4.13 shows some realizations of I, (t) when x=0.5.
I(t)
-
1 -
08
046

04t

' £ days)
3

[
[

0.3 1 1.3 2
Figure 4.13. Some realizations of I () when x=05.

The increments of I (t) are Gaussian random variables having the mean and variance

given by equations (4.5.7) and (4.5.8).

The SDE given in equation (4.5.4) is linear and strong solutions do exist. When F,; are not

functions of t, then the solution of equation (4.5.4) is given by

L(t)=FEt+0G.B(¢). (4.5.11)
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Equation (4.5.11) provides realizations which have the statistical properties of the
realizations depicted in Figure 4.13. The vector B(t) consists of independent Wiener

processes; Figure 4.14 shows some realizations based on equation (4.5.11).

The statistical properties of these realizations are essentially the same to those of the
realizations given in Figure 4.13.

As we have mentioned earlier, I (t) are only dependent on the velocity patterns in the

medium, and it is important ask the question how the correlation length, b, affects the
-’

realization of I, (t). (In this discussion we focus on the kernel o’ *  only). It is seen

that o (the square root of the variance of the kernel) acts as the multiplication factor to the
diffusion form of the SDE given in equation (4.5.11). However, the correlation length b
influence I () nonlinearly through G,, but this influence can always be captured by

suitable changes in o . Therefore, we can keep b at a constant value that is appropriate for
the porous medium under study. We found that b =0.1 is suitable for our computational
experiments in this chapter as well as in chapters 6, 7 and 8.

t{ days)
035 1 1.5 2 23 i T

Figure 4.14. Some realization of I (t) forfixed F ;s when x=0.5 based on equation (4.5.11).

Equation (4.5.11) can be written in component forms,

m

Loo(t)=Foo(t)+ 02 G oB;(t), (4.5.12a)

L,(t)=F,(t)+ UiGM B;(#), (4.5.12b)
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and I,(t)=F,,(t) +o-ZGx2] : (4.5.12¢)

In the above equations, m is the number of significant eigen functions and is dependent on
b. From equation (4.2.24), (4.2.25) and (4.2.26), we see that G, are related to P,(x) which

ij
are given by equations (4.2.10), (4.2.11) and (4.2.12). For b=0.05, m =8, Figure 4.15 give
R.j(x)s when 0.0<x<1.0. The following observations can be noted from Figure 4.15: (a)
DBjs, therefore G;s are sinesodial in nature; (b) amplitutes of P,s increase with m (eigen
function number) but as eigen values decrease with m, G;s diminish with m (not
shown); (c) P;s are insignificant in comparision to F,;s and P;s and therefore could be
ignored; and (d) frequency of P, functions increases as m increase.

ij
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Figure 4.15. The approximated P; (x)s given by equations (4.2.10), (4.2.11) and (4.2.12)
when 00<x<1.0 for b=0.05.
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Figure 4.16. The approximated P,(x)s given by equations (4.2.10), (4.2.11) and (4.2.12)
when 0.0<x<1.0 for b=0.1.

When b=0.1, the required number of significant eigen values is reduced to 6 and P,
functions are depicted in Figure 4.16. Similar observation as before, when b=0.05, can be

made. Figure 4.17 shows D; functions when b=0.2, and now the number of significant

eigen values is 5 (i.e, m=>5). The same observations can be made for P; swhen b=0.2.

We produce the 3-dimensional graphs of P; when i=0,1 and j=1,2,3,4,5 in Figure

418 and Figure 4.19; b is plotted as the y-axis. As one could expect, it is reasonable to

assume that function surface of Pi]. is a smooth, continuous function of b. We can define

continuous functions of x and b todefine P,s.
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Figure 4.17. The approximated P, (x)s given by equations (4.2.10), (4.2.11) and (4.2.12)
when 00<x<1.0 for b=02.
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ij

when i=0 and j=1,2,3,4,5



Computational Modelling of Multi-Scale Non-Fickian Dispersion

148 in Porous Media - An Approach Based on Stochastic Calculus
mo. 05
il
- mo.1
—0.05 oo, 2
P11
-0, 1

A, 0z
A
P A A A A A S AT

0.z
fffffffffﬁffffﬁfffﬁf b
Fr A f 777 F7n0s

DIDZDSD4DSDEDTDBD‘31

-0.15
] 0.2 0.%2 0.4 005 06 07 008 0.9 1
=
mO.05
0.13 mO.1
01
0.05 T @0, 2
P, 0 "';-‘4
_fﬁnf 0.z
o1t AT A A A A A T A S AT
0 0.1 0.2 0.2 004 005 006 O7T 008 009 1
x
Ll || m0.05
|57
0.15
01 j{;,_l mo.1
0. 0% "'
; - m0.2
_,f
P13—D.|35 | -
-0.1 n.z
-0.15 HHHHHHHHHHHHHHH
-5.2) 77 r f A A e e i W
0. 0. 0.3 0.4 005 006 OOT7 0.8 0.9 1
=
mO. 05
0 2 Al
o s #Jrﬁ mo. 1
0.1 if’ B0, 2
P o |
0.1
L2
3

X



A Generalized Mathematical Model in One-Dimension 149

] ,L| Wm0, 05
o2
mO1
o 1fly] LA B
okl¥] A3 ma. 2
Fus _y i
_ FllS S 7 n.z
”-zgxrffxxrrffxxrfxfxxrf b

N o A A A A A A A A A A i v A A W
0.1 0.2 0.% 0.4 0.5 0.6 0.7 0.8 0.9 1

bt
Figure 4.19. The 3-dimensional graphs of P, when i=1 and j=1,2,3,4,5

As we recall that the SSTM can be expressed as a diffusion process with martingale
properties in time dimensions when another set of diffusion processes, I (t) are used:

7 =

2
dCx(t)z—Cx(t)dlxlo—(aaixj dlm—[aa f] I, 45.13)

We need to interpret this equation as follows: the solute concentration at a given point x
consists of a combination of three diffusion processes which are solely based on velocity.

The spatial influence on the concentration is mediated through the prevailing concentration,
and its spatial gradients. In keeping with the Ito definition of stochastic integration
(Klebaner, 1998) we must use the concentration and its spatial gradients at a previous time.
As a difference equation, we can write equation (4.5.13) as,

Cx (t+1)_cx(tn):_cx (t71)d1x,0(tn)_[aa£) de,l (tn)_(?;fj de,Z(tn)’ (4514)

x X

where ¢, denotes the discretized time and the spatial gradients act as the coefficients of

dl, (t) , and therefore can be written as,

dl,
oC o°C v
ac_(t)=|-c. -—== ===l dl . |=FdL, 4515
O L (4519
d,,
2
when, F=|-C, _6Cx _6C2X .
’ ox ox

Therefore, we can write,
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As P,; functions are insignificant compared to the other two functions, we can
approximate equation (4.5.15) as
ac deO
dc (t)=|-C —— . 4.5.16
() { ! ox }Lﬂm ( )

This approximation enables us to reduce the computational time further in obtaining
solutions.

Equation (4.2.3) gives the general form of eigen functions, fj(x) s. By inspecting equation
(4.210), (4.2.11) and (4.2.12), we can deduce the following relationships between P, sand f; s:

y

#

d*fi(x
By(x)=—7—+h, T;(Z ), (4.5.17)
daf (x
B (x)=fi(x)+h, 721& ), (4.5.18)
h
and sz(x)=?*fj(x). 4.5.19)
Therefore G; are given by,
df, d*f,
Goy =% —L+ oA 3 (4.5.20)
G, = Jaf +h 7
=4S+ \/;T]a (45.21)
and G, =%\/,T, fi (45.22)

The components of diffusion matrix a (see equation (4.5.5)) can be written as,

aii = UZZG(ZZ',])}(I (illlzl 3) 7 (4523)
k=1
and a,=0") G, ,G, ., (7,1,2,3) . (4.5.24)
k=1

For example,
m
2 2
a,=0 ZGUk
k=1

o i Al
- ;(\/Tk dx +h"\/2 dx? j !
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oveo S| (% +ana () o (34 w529

Similarly,

dx

% =o'y Gl =0 Z[ A+ f e [dfj] (4.5.26)

g = azz%ﬂ,j fl (4.5.27)
k=1
a;s can also be evaluated using equation (4.5.24).

This menas that once we have eigen functions in the form given by equation (4.2.3), the
diffusion matrix a can be evaluated and equation (4.5.7) and (4.5.9) can be used to

calculate the strong solutions for L (t).

=x

4.6 Propagator of I, (t)
L (t) canbe defined as

& (AL (1), t)=(1,,(b+At) -1, ;)

& denotes the displacement of I, ,(t) during the infinitesimally small time interval At

The propagator of

L, (t). (4.6.1)

given the position (value) of I, (t) at time t. As I ,(t) is an Ito diffusion, it is also a

Markov process; the propagator gi(At;lei(t),t) is also a Markov process having a

Gaussian probability density function, which completely specifics the propagator variable.
To abbreviate the notation, we denote the propagator as ¢;(At). It can be shown that the

moments of ¢;(At) has the analytical structure (Gillespie, 1992),
E(s!(at))= [ des"P(z|At) =B, (t)At +O(At), (4.6.2)

when B, s are well behaved functions of t foragiven I ,(t) (B,(t) are also called the n

th propagator moment function.) ; and P(g\At) is the probability density function of
& (At).
It can be shown that, for a given value of Ix,i(t) at time t, the mean and variance of the

propagator function can be expressed as follows (Gillespie, 1992):
E(& (At))= A, (t)At+O(At),and (4.6.3)

Var (,(At)) =D, (t)At + O(At), (4.6.4)
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when A,(t) and D,(t) are independent of At. As the variance can not be negative,
D,(t) should be a non-negative function. As mentioned before, ¢ (At) is a Gaussian

variable, i.e,, it is normally distributed; therefore, we can write,
&/(At)=N(A,(t)At,D,(t)At), (4.6.5)

“

where “ =" indicates the random variable is generated from the normal density function
having the mean, A, (#)At and the variance D, (t)At.

If we recall, equation (4.5.9) gives,
E{(L,(t+2)-1,, (1)

This can be written as,

L.(t)] =a,at+0(a). (4.6.6)

E{ef(At)

I (1)} = a;At. (4.6.7)
when t=t, ie, At=0, therefore & (At)=0.
E(e /At)=0 at t=t,.
This leads to
Var(,(At)) =a,A+O(A). (4.6.8)

By comparing equation (4.5.7) with equation (4.6.3), and equation (4.6.4) with equation
(4.6.8), we deduce that,

A,(t)=F,;, and (4.6.9)
D,(t)=a,. (4.6.10)

We can now write the Langevin equation for the Ito diffusion, I, ,(t).

4.7 Langevin Equation for I, (t)

From equation (4.6.1), the propagator can be written as,
dl, (At)=1,,(t+At)-1,,(t), for a given I, (t). (4.7.1)
At the same time, we can write equation (4.6.5) as,
I, ()= N[a, ()AL} + E, At 47.2)

where N is a unit normal random variable generated from N(0,1) density function. In
the limit, At —0,
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dl, () =F, dt +[a, (t)dt ]2 N. (4.7.3)
This is the first form of the Langevin equation for I, (t).
It can be shown that, if N = Normal(O,l),
BN + 2 = Normal(4, 5°), (4.7.4)

Therefore, /dtN is a normally distributed random variable having the density function
Normal(0,dt). This is the density function of the standard Wiener process increments,

dw(t) . Therefore, we can rewrite equation (4.7.3) as,
dI, ,(t) =F, dt +fa,duw,(t). (4.7.5)
Equation (4.7.5) is the second form of the Langevin equation.

The advantage of this Langevin approximation for I ,(t) over equation (4.5.2) is that it is

not a multidimensional SDE but a one-dimensional one. This would allow us to compute
I, ;(t) s more efficiently.

The moment evolution equations for I.,(t) can be given as follows: (See Gillespie (1992)

for derivations.)

[(“(t )J =E[F,,], (4.7.6)
d[Var(lei(t))]

=2 E[L ()F, ]~ E[L, () JE[E, ]) +Ela,), (@77)

with initial conditions,
E[I,,(0)]=0, and (4.7.8)
Var[1,,(0)]=0. 4.7.9)

If F,; and a; are deterministic functions of x then the moment evolution equations can
be simplified to equations (4.5.7) and (4.5.8).

4.8 The Evaluation of C (t) Diffusions
The SSTM can be written as, for given x , (see equation (4.5.13)),

2
dCX(t):—CX(t)dIXVU_[aa(;:j dhr[% xc j d,, (4.8.1)
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where subscript x refers to the first and second derivatives with respect to x . Note that
the coefficients are functions of t for given x, and I ; s are Ito diffusions based on the

velocity structure. Equation (4.8.1) is a stochastic diffusion and a SDE which displays the
interplay between the concentration profile and velocity structures in the medium. By
substituting the equations of the form of equation (4.7.5) for dI, ; s we obtain,

dC, (£)==C, (t)(F ottt + \Jagy vy (1))
—(%l (Fadt +Ja duw, (1)) 4.8.2)

_ (sz(;j (F. ot +Jaydeoy (£))-

X

In equation (4.8.2), dw,,dw, and dw, are independent standard Wiener increments.

Equation (4.8.2) can be written as,

2

dC, (t)=-a(C,(t),t)dt =Y B,(C,(t),t)dw,, (4.8.3)
where,
aC *C
a(C,(t),t)=a= [CX (t)E.,+ (EJFM + [axsz”] , (4.8.4)
Py =C.(t)ary (4.8.5a)
A, =(%C] Ja,, ,and (4.8.5b)
x X
B, = (szfj Ay - (4.8.5¢)

Now the equation (4.8.3) can be written as

2
dC,(t)=—adt-> Bdw,,
k=0

dw, (4.8.6)
=—adt+[—ﬁo -5 —,82] dw, |.

dw,

Equation (4.8.6) gives a diffusion matrix,

f=[-8 -8 -Bl-6 -8 -85,

(4.8.7)
= ﬁoz + ﬂlz + ﬂzz
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Following Klebaner (1998), the expectations of infinitesimal differences of C,(t) can be

written as (see also equation (4.5.7) and (4.5.9)),

E(Cx(t+A)—CX(t)

C.(t))=—ar+0(a) , (4.8.8)

and

E((C.(t+8)-C. (1))

Cx(f))=(ﬁ§+ﬁf+ﬂ§)A+O(A). (4.8.9)

Following the same arguments as in the case of deriving the Langevin equation for I ,(t),

we can obtain the Langevin equation for C,(t):

dC, (t)=—adt+ 7 + B} + B dw(t), (4.8.10)

where dw(t) is independent increments of the standard Wiener process, and if

B, E\//an +pi+f;, then
dC, (t)=—adt+ Bdw(t). (4.8.11)

This shows that the concentration at given x can be characterised by a Langevin type
stochastic differential equation. This equation can be used to develop numerical solutions of
the concentration profiles.

The time evolution of the probability density function of C,(t), P, (Cx,t

C.(t),ty), is
described by Fokker-Plank equation (Klebaner, 1998; Gillespie, 1992). The Fokker-Plank
equation for P, (y,t[y,.t,) is,

P, (y,tyo to) za(aPt)gaz(ﬂiPx), (48.12)
ot oy 2 oy

where y denotes C,(t) and P, standsfor P, (y,t[y,t,)-
Equation (4.8.12) has the initial condition,

P(y,t=ty[yoty)=(y—1o), (4.8.13)

where ¢ is the Dirac-delta function.

Once we solve the Fokker-Plank equation (4.8.12) along with its initial condition, the time
evolution of probability density function can be found. This is also a weak solution to
equation (4.8.10). Equation (4.8.10) also has strong solutions which can be obtained by

integrating the SDE (4.8.11) using Ito integration. The drift coefficient (—«) in equation

(4.8.11) is a stochastic variablein x and ¢.
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Similar to equations (4.7.6) and (4.7.7), we can write time evolution of the moments C,(t).

The derivation of these equations are very similar to those given by Gillespie (1992).
The time evolution of the mean of C,(t) is given by,

4(E(C. (1))

———=E[-a], (4.8.14)

therefore,
E(C,(t))= jE[—a]dt. (4.8.15)

The mean of C,(t) atagiven x isexpressed as an integral of the expectation of (-a). As

can be seen from equation (4.8.4), a is not only dependent on C,(t) and its first and

second derivatives with respect to x, but also dependent on the mean velocity and its first
and second derivatives with respect to x, according to equations (4.2.20), (4.2.21) and
(4.2.22). The initial condition for equation (4.8.15) is C,(0), the value of the concentration at

time is zero for a given x .

The evolution of the variance of C, (t),(Var (C, (t))) is given by,

W ~2(E(-aC, (1)) + E(C, (1)) E(a))+ E[ 8], (4.8.16)

and the variance of C,(t) can be obtained by integrating equation (4.8.16) with respect to ¢,
t t t
Var(C, (1)) = 2[ E(-aC, (t))dt + 2[ E(C,(t))E(a)dt + [ E[ B2 ]dt. (4.8.17)
0 0 0

By Fubini’s theorem (Klebaner,1998), for continuous stochastic variable such as «, C, (t)

and f,, we can rewrite equation (4.8.17) as,

t t t
Var(C,(t)) = —ZEUacx(t)dt} 2[E(C, (t))E(a)dt + E{jﬂf}dt. (4.8.18)
0 0 0
In equation (4.8.18), Fubini’s theorem is only applied to the first and third term of equation
(4.8.17).

Once we evaluate the mean and variance of C,(t), we can obtain the probability density
function, P, (y,t‘yo,tn) of C,(t) (y represents the value of C,(t)). As Ito diffusions are
Martingales with Markovian properties (Klebaner, 1998), and C,(t) is Gaussian,
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P‘c(y’t

Y0,0)=P.(y,t)= _(y_E(y)))Z}. (4.8.19)

1
[ZVar(y)]% eXp[ 2Var(y

when E(y) and Var(y) are given by equations (4.8.15) and (4.8.18). When time is zero,
P,(C,(0))=1.0.

x

Equation (4.8.19) should also be the solution to the Fokker-Plank equation (4.8.12). The
Fokker-Plank equation (4.8.12) is a stochastic partial differential equation for which
analytical equations can not easily be obtained. Therefore, we can make use of this fact to
verify the numerical solutions for the Fokker-Planck equation.

4.9 Numerical Solutions
We have seen in the previous section 4.8, the following SDE gives the time course of

concertration C, (t)fora given x in the vicinity of x:
dC, (t)=—adt+ p.dw(t), (4.9.1)

where dw(t) is the standard Wiener increments with a zero mean and dt variance, if dt

is sufficiently small; the drift coefficient « is given by (see equation (4.8.4)),

aC o’C
a=C, (t)F ,+ (al F.,+ (ale F.,. (4.9.2)
In equation (4.9.2),
_ -
g, Vet) b OV (4.9.3)
’ Ox 2 ox
_ 817(x,t)
F . =V(xt)+h , 494
x,1 (x ) x ax ( )
and,
ho—
F,= E‘V(x,t); (4.9.5)

where V(x,t) in the mean velocity which is assumed to be regular differentiable

continuous function.
. inequation (4.9.1) is given by,
1
p=(m+ 5+ B2), (4.9.6)
where,

fr=C. (1), (49.7)
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oC
pi=(5) o, ana

x

o’C
po= [a] Vs, (498)

The following equation gives the expressions of a,,,4,,, and a,,,
a,=0") G}, (1,0,1,2), (4.9.9)
j=1

where m is the number of effective eigen functions, and
Gy=yJ4P;, (i,0,12). (4.9.10)

In the numerical solutions, we make use of the finite differences, for a given dependent
variable, say U, based on the grid given in Figure 4.20

t (time)
-~
m
|{|"| I \i
7 e
At
t-1)
n
Y

0 1 2 3 4 Ay

Figure 4.20. Space-time grid used in the numerical solutions with respect to y

m um_um
[au] _ur-un) ’”), (4.9.11)
), Ay
2 m um _ zum 4 um
ou _u = "*2), (4.9.12)
), Ay
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m m+1l _ ym
(&j _(u-uy) @9.13)
ot At

n
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By using a numerical scheme developed, we obtain realizations of C, (t) as strong

solutions to equation (4.9.1). We can also obtain solutions to the Fokker-Plank equation
(4.8.12) using the same finite differences.

4.10 Remarks for the Chapter

In this Chapter, we develop a generalized form of SSTM that can include any arbitrary
velocity covariance kernel in principle. We have demonstrates that for a given kernel, a
generalized analytical forms for eigen functions can be obtained by using the computational
methods developed. We have also developed a Langevin form of the SSTM for a given x,

and the time evolution of concentration, C, (t), follows a stochastic differential equation
having the coefficients « and g, which are again functions of C,(t) and eigen
functions. In other words, if one monitors the concentration C,(t) at a given point in
space, the data collected along with time would constitute a realization of the strong
solution of the SDE. The solution is a function of the covariance kernel, i.e. a function of &*
and b for an exponentially decaying kernel, and also a function of C,(t) itself and its
first- and second derivatives with respect to x . This focus of SDE provides a very

convenient and computationally efficient way to solve the stochastic partial differential
equation associated with the SSTM.

By deriving a Langevin form of the SSTM, we essentially prove that any time course of the
concentration at a given point behaves according to the underlying SDE, which would
characterize the nature of local porous medium and is a statement of mass concentration of
the solute.






