
 

spatially averaged ( )d t  is a Gaussian random variable with zero-mean and 2 t   -
variance, which can be readly incorporated into the numerical solution scheme for SSTM.  

Because of the high computational times involved, instead of using the SIM procedure, we 
estimate the dispersivity for a computational  experiment by limiting ourselves to the 
SSTM parameters obtained for experimental sand aquifer (i.e., 2 =0.01; b=0.01 m ) in the 
following way: 

(a) Set the initial and boundary conditions as,   

( ,0) 0, 0
(0, ) 1.0, 0
( , ) 0, 0

C x x
C t t
C t t

 
 

  
  and 

(b) Solve equation (21) assuming mean velocity to be 1.0 m/day, 

(c) Use a realization of C(x,t) at x=a to estimate the dispersivity,  L   , using equation (3.10.5) 
(Fetter,  1999) given below using nonlinear  regression:  ( Mathematica®   was used  for  this 
purpose.)   

( , ) 0.5 exp
2 2LL L

a t a taC x t erfc erfc
t t 

                     
.                                (3.10.5) 

Equation (3.10.5) is the analytical solution for the one-dimensional advection-dispersion 
equation for the initial and boundary conditions given in (a) above. To get a reliable estimate 
of  L  for given a, we need to have x-axis length of 1.5 a meters and should have C(x,t) 
realization upto 2 a days. For example, to obtain an estimate of  L  for a = 3000 meters, we 
need to run the simulation of a domain of 4500 meters for 6000 days. However, to reduce the 
computational time, one can use higher  x  and  t  values than ideally suitable in solving 
SPDEs thereby sacrificing the reliability. ( x =0.01 m and t =0.00001 days would give very 
good solutions to SSTM.) However, this approximate procedure is only valid for the velocity 
covariance kernel used in this chapter. This procedure is not as reliable as the SIM. 

We overlay some representative values of dispersivities from the SSTM on a graph of the 
field measurements obtained by Gelhar (1986) from different experiments in Figure 3.34, 
which shows that SSTM could model the multi-scale dispersion with a single set of 
parameters, 2 =0.01; b=0.01 m, that would give rise to similar non-linear scale dependency 
of “deterministic” dispersivity evaluated using the realisations of SSTM.  

In Figure 3.34, the larger (hollow) circles depict the most reliable experimental data whereas 
the smaller (filled) circles give the data with lesser experimental accuracy. The dotted lines 
show the bounded region of experimental data. The estimated dispersivity values (filled 
squares) from SSTM are within the bounded region and follow similar trends to the most 
reliable experimental data. We estimated the dispersivities from SSTM using only a limited 
number of computational experiments, and each computational experiment produces a 
random realisation. Therefore, the estimated dispersivities are stochastic quantities just like the 
experimental values, and it is reasonable to expect discrepancies within the bounded region.

 

4 
 

A Generalized Mathematical  
Model in One-Dimension 

 
4.1 Introduction 
In the previous chapter we derived a stochastic solute transport model (equation (3.2.14)); 
we developed the methods to estimate its parameters, and investigated its behaviour 
numerically. We see some promise to characterise the solute dispersion at different flow 
lengths, and there are some indications that equation (3.2.14) produce the behaviours that 
would be interpreted as capturing the scale-dependency of dispersivity. However, there are 
weaknesses in the model as evident from Chapter 3. These weaknesses, which are discussed 
in the next section, are stemming from the very assumptions we made in the development 
of the model. One could argue that by relaxing the Fickian assumptions, we are actually 
complicating the problem quite unnecessarily. But as we see in Chapter 3 and in this 
chapter, we develop a new mathematical and computational machinery at a more 
fundamental level for the hydrodynamic dispersion in saturated porous media. 

We see that equation (3.2.14) is based on assuming a covariance kernel for the velocity 
fluctuations, and the solution is dependent on solving an integral equation (see equation 
(3.3.11)). In Chapter 3, the integral equation is solved analytically for the covariance kernel 
given by equation (3.3.10) to obtain the eigen values and eigen functions, but analytical 
solutions of integral equations can not be easily derived for any arbitrary covariance kernel. 
This limits the flexibility of the SSTM in employing a suitable covariance kernel independent 
of the ability to solve relevant integral equations. Further, we need to solve the SSTM in a 
much more computationally efficient manner, and estimating dispersivity by always 
relating to the deterministic advection-dispersion equation is not quite satisfactory. 
Therefore, we seek to develop a more general form of equation (3.2.14) in this chapter. 
 

4.2 The Development of the Generalized Model 
We restate equation (3.2.14) in the differential form: 

         , , , mdC S V x t C x t dt S C x t d t  ,                 (4.2.1) 

where    
1

m

m j j j
j

d t f db t  


  .             (4.2.2) 

We use the same notations and symbols as in Chapter 3. In equation (4.2.2),  md t  is 

calculated by summing m terms of (  j j jf db t ), and for each eigen function, jf , there is an 

associated independent Wiener process increment (  jdb t ). 
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This Wiener process increment is -correlated in time only, and for a particular point in 
time, it , the Wiener process  ,B f  generates the Wiener increments  j idb t for each of 

the eigen functions. At another time, kt ,  ,B f  generates  j kdb t  for each of the eigen 
function. However, as the Wiener increments are Gaussian with t  variance (see Chapter 
2), i.e.,  j idb t  and   j kdb t  are essentially the same stochastic variable. 

The number of terms that need to be summed up, m, has to be determined by considering 
the contribution each pair of eigen value i  and corresponding eigen function jf  make to 
approximate the covariance. 

Instead of solving the integral equation to obtain eigen function, we assume the following 
function to be a generalized eigen function. (We will discuss the method to obtain this 
function for any given kernel in section 4.3.) 

We define, 

   2
0 1

2

j
kj kj

p
r x s

j j j kj
k

f x g g x g e 



   ,                      (4.2.3) 

where  jf x  is the jth eigen function of a given covariance kernel, 0 jg , 1 jg  and kjg  are 
numerical coefficients,  jkr  and jks  are the coefficients in the exponent where k is an 
integer index ranging from 2 to jp . jp  is determined by the computational method in 
section 4.3. 

The differential operator is defined by, 

2

22
xhS
x x

  
     

, 

and the second term on the right hand side of equation (4.2.1) can be written as, 

        
1 1

, ,
m m

j j j j j j
j j

S C x t f db t S C x t f db t  
 

 
  

 
  ,              (4.2.4) 

after substituting equation (4.2.2) into the second terms of equation (4.2.1) and taking 

j and  jdb t out of the operand. We can now expand the differential, 
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 .             (4.2.5) 

Let us evaluate the derivatives separately; 
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  (4.2.6)  

Now the derivative within the summation in equation (4.2.6) is evaluated. 
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Substituting this derivation back to equation (4.2.6) and defining,  ,j x t  for eigen 
function j, 
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 (4.2.7) 

Then taking the derivative of  ,j x t  with respect to x, 
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This Wiener process increment is -correlated in time only, and for a particular point in 
time, it , the Wiener process  ,B f  generates the Wiener increments  j idb t for each of 

the eigen functions. At another time, kt ,  ,B f  generates  j kdb t  for each of the eigen 
function. However, as the Wiener increments are Gaussian with t  variance (see Chapter 
2), i.e.,  j idb t  and   j kdb t  are essentially the same stochastic variable. 

The number of terms that need to be summed up, m, has to be determined by considering 
the contribution each pair of eigen value i  and corresponding eigen function jf  make to 
approximate the covariance. 

Instead of solving the integral equation to obtain eigen function, we assume the following 
function to be a generalized eigen function. (We will discuss the method to obtain this 
function for any given kernel in section 4.3.) 

We define, 
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where  jf x  is the jth eigen function of a given covariance kernel, 0 jg , 1 jg  and kjg  are 
numerical coefficients,  jkr  and jks  are the coefficients in the exponent where k is an 
integer index ranging from 2 to jp . jp  is determined by the computational method in 
section 4.3. 

The differential operator is defined by, 
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and the second term on the right hand side of equation (4.2.1) can be written as, 
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after substituting equation (4.2.2) into the second terms of equation (4.2.1) and taking 

j and  jdb t out of the operand. We can now expand the differential, 
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Let us evaluate the derivatives separately; 
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Now the derivative within the summation in equation (4.2.6) is evaluated. 
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Substituting this derivation back to equation (4.2.6) and defining,  ,j x t  for eigen 
function j, 
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Then taking the derivative of  ,j x t  with respect to x, 
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Therefore, equation (4.2.5) can be expressed as, 
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                (4.2.12) 

We see that, in equation (4.2.9), the coefficients,    0,1,2ijP x i   are functions of x only. 

If we recall the premise on which stochastic calculus is discussed in Chapter 2,  ,C x t  is a 
continuous, non-differentiable function, and equation (4.2.1) should be interpreted as an Ito 
stochastic differential, which essentially mean equation (4.2.1) has to be understood only in 
the following form: 

       , , , , , , ,i i
i

C x t A C x t t x dt B C x t t x dw   ,             (4.2.13) 

where   , , ,A C x t t x  is the drift coefficient and   , , ,iB C x t t x  are diffusion coefficients 

of the Ito diffusion, equation (4.2.13); here  idw t  are increments of the standard Wiener 
process. Ito diffusion are an interesting class of stochastic integrals and has many 
advantageous properties of practical importance (Klebaner, 1998).  

 

The expression of stochastic partial differential equation (equation (4.2.1)) as an Ito diffusion 
in time would give us the mathematical justification in solving it using Ito calculus. In our 
development, the eigen functions,  jf x  are continuous, differentiable functions so are the 

coefficients,   0,1,2ijP x i  . Therefore, the Ito stochastic product rule is the same as the 
product rule in standard calculus (Klebaner, 1998), and we employ this fact in the previous 
derivations. Further, we assume that the mean velocity  ,V x t  is a continuous, 
differentiable function which is a reasonable assumption given that the average velocity in 
aquifer situation is based on the hydraulic conductivity, porosity and the pressure gradient 
across a large enough domain within a much larger total flow length. 

Therefore, we can write the drift term of equation (4.2.1) as follows: 
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By substituting equations (4.2.14) and (4.2.9) into equation (4.2.1), 

 

           

   

       

2

2 2

2

2

2

0 1 2 2
1

, , , ,
, , 2

2 2
,

,
,

2

, ,
, ,

x x

x

m

j j j j j
j

V x t V x t V x t C x th hC x t V x t
x x x x

dC x t
C x th V x t
x

C x t C x t
P C x t P P db t

x x
 



       
                  

      
  

      
  

and then, 

       2

0 1 22

, ,
, , ,

C x t C x t
dC x t C x t dI dI dI

x x
 

   
 

              (4.2.15) 

where, 

       
2

0 02
1

, ,
,

2

m
x

j j j
j

V x t V x thdI x t dt P db t
x x

 


  
      

 ,           (4.2.16) 

 



A Generalized Mathematical Model in One-Dimension 121
 

  

         

       

2 2

2 2

2

1 0 1 2
2 2

22

2 2

, ,
2 2

4 2 ,

j j
kj kj kj kj

j j
kj kj kj kj

p p
r x s r x s

j kj kj kj j j kj
k k

p p
r x s r x s

kj kj kj kj kj
k k

C x t C x t
g g r x s e g g x g e

x x

g r x s e g r e C x t

   

 

   

 

              
     

     
 

 

 
 (4.2.8) 

Therefore, equation (4.2.5) can be expressed as, 
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                (4.2.12) 

We see that, in equation (4.2.9), the coefficients,    0,1,2ijP x i   are functions of x only. 

If we recall the premise on which stochastic calculus is discussed in Chapter 2,  ,C x t  is a 
continuous, non-differentiable function, and equation (4.2.1) should be interpreted as an Ito 
stochastic differential, which essentially mean equation (4.2.1) has to be understood only in 
the following form: 

       , , , , , , ,i i
i

C x t A C x t t x dt B C x t t x dw   ,             (4.2.13) 

where   , , ,A C x t t x  is the drift coefficient and   , , ,iB C x t t x  are diffusion coefficients 

of the Ito diffusion, equation (4.2.13); here  idw t  are increments of the standard Wiener 
process. Ito diffusion are an interesting class of stochastic integrals and has many 
advantageous properties of practical importance (Klebaner, 1998).  

 

The expression of stochastic partial differential equation (equation (4.2.1)) as an Ito diffusion 
in time would give us the mathematical justification in solving it using Ito calculus. In our 
development, the eigen functions,  jf x  are continuous, differentiable functions so are the 

coefficients,   0,1,2ijP x i  . Therefore, the Ito stochastic product rule is the same as the 
product rule in standard calculus (Klebaner, 1998), and we employ this fact in the previous 
derivations. Further, we assume that the mean velocity  ,V x t  is a continuous, 
differentiable function which is a reasonable assumption given that the average velocity in 
aquifer situation is based on the hydraulic conductivity, porosity and the pressure gradient 
across a large enough domain within a much larger total flow length. 

Therefore, we can write the drift term of equation (4.2.1) as follows: 
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By substituting equations (4.2.14) and (4.2.9) into equation (4.2.1), 
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where, 
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In equation (4.2.15), 0 1,dI dI  and 2dI  are Ito stochastic differentials with respect to t as 
well, and we can rewrite a generalized SSTM given by equation (4.2.1) in terms of another 
set of stochastic differentials, 
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We note that 0 1,dI dI  and 2dI  are only functions of the mean velocity,  ,V x t , and 

  0,1,2ijP x i  ; and  ,C x t  is separated out in equation (4.2.19), which can be interpreted 

as  ,C x t  and its spatial derivatives are modulating  0,1,2idI i  s. iI  are Ito stochastic 
integrals of the form given by equation (4.2.13), and can be expressed as, 
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where, 

     2

0 2

, ,
, ,

2
xV x t V x thF x t

x x
  

     
                     (4.2.21) 

     
1

,
, , 2 ,

2
x V x thF x t V x t

x
 

    
                     (4.2.22) 

   2 , , ,
2
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 0 0 ,j j jG P x                                (4.2.24) 

 1 1 ,j j jG P x                               (4.2.25) 

and  2 2 .j j jG P x                       (4.2.26) 

As the stochastic integrals,  ,iI x t  are dependent only on the behaviours of  ,V x t , the 

eigen values of the velocity covariance kernel and  ijP x  functions, i.e.,  ,iI x t s are only 
dependent on the velocity fields within the porous media. A corollary to that is if we know 
the velocity fields and characterize them as stochastic differentials, we can then

 

develop an empirical SSTM based on equation (4.2.19). We explore the behaviours of 
 ,iI x t in section 4.5. Next we discuss the derivation of the generalized eigen function, the 

form of which is given by equation (4.2.3). 
 

4.3 A Computational Approach for Eigen Functions 
We discuss the approach in this section to obtain the eigen functions for any given kernel in 
the form given by equation (4.2.3). We calculate the covariance kernel matrix (COV) for any 
given kernel function and COV can be decomposed in to eigen values and the 
corresponding eigen vectors using singular value decomposition method or principle 
component analysis. This can easily be done using mathematical software. Then we use the 
eigen vectors to develop eigen functions using neural networks. 

Suppose that we already have an exponential covariance kernel as given by,  

2
1 2( , )

y

bq x x e


  ,                           (4.3.1) 

where 1 2y x x  , 

      b is the correlation length , and  

      2  is the variance when 1 2x x . 

In terms of 1x  and 2x , both of them have the domain of [0,L]; we equally divide this range 
into (n) equidistant intervals of  x  for both variables. Thus, the particular position for 1x  
and 2x  can be displayed as: 

1 , for 0,1, 2, ,kx k x k n    , and                     (4.3.2) 

2 , for 0,1, 2, ,jx j x j n    .                         (4.3.3) 

By substituting equations (4.3.2) and (4.3.3) into equation (4.3.1), we can obtain, 

   
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2 , 1, 1, for
k j x

bCOV e k j nk j 
 



   .                 (4.3.4) 

In equation (4.3.4), COV is the covariance matrix which contains all the variances and 
covariances, and it is a symmetric matrix with size n n  where n is the number of 
intervals. The diagonals of COV represent variances where 1x  is equal to 2x  and off-
diagonals represent covariances between any two different discrete 1x  and 2x .  

After the covariance matrix is defined, we can transform the COV matrix into a new matrix 
with new scaled variables according to Karhunen-Loève (KL) theorem. In this new matrix, 
all the variables are independent of each other having their own variances. i.e, the 
covariance between any two new variables is zero. The new matrix can be represented by 
using the Karhunen-Loève theorem as, 
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In equation (4.2.15), 0 1,dI dI  and 2dI  are Ito stochastic differentials with respect to t as 
well, and we can rewrite a generalized SSTM given by equation (4.2.1) in terms of another 
set of stochastic differentials, 
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We note that 0 1,dI dI  and 2dI  are only functions of the mean velocity,  ,V x t , and 

  0,1,2ijP x i  ; and  ,C x t  is separated out in equation (4.2.19), which can be interpreted 
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       
1

, , , ,
m

i i ij j
j

I x t F x t dt G x t db t


     (i,0,1,2) and (j,1,m),          (4.2.20) 
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 1 1 ,j j jG P x                               (4.2.25) 

and  2 2 .j j jG P x                       (4.2.26) 

As the stochastic integrals,  ,iI x t  are dependent only on the behaviours of  ,V x t , the 

eigen values of the velocity covariance kernel and  ijP x  functions, i.e.,  ,iI x t s are only 
dependent on the velocity fields within the porous media. A corollary to that is if we know 
the velocity fields and characterize them as stochastic differentials, we can then

 

develop an empirical SSTM based on equation (4.2.19). We explore the behaviours of 
 ,iI x t in section 4.5. Next we discuss the derivation of the generalized eigen function, the 

form of which is given by equation (4.2.3). 
 

4.3 A Computational Approach for Eigen Functions 
We discuss the approach in this section to obtain the eigen functions for any given kernel in 
the form given by equation (4.2.3). We calculate the covariance kernel matrix (COV) for any 
given kernel function and COV can be decomposed in to eigen values and the 
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eigen vectors to develop eigen functions using neural networks. 
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In equation (4.3.4), COV is the covariance matrix which contains all the variances and 
covariances, and it is a symmetric matrix with size n n  where n is the number of 
intervals. The diagonals of COV represent variances where 1x  is equal to 2x  and off-
diagonals represent covariances between any two different discrete 1x  and 2x .  

After the covariance matrix is defined, we can transform the COV matrix into a new matrix 
with new scaled variables according to Karhunen-Loève (KL) theorem. In this new matrix, 
all the variables are independent of each other having their own variances. i.e, the 
covariance between any two new variables is zero. The new matrix can be represented by 
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where n is the total number of variables in the new matrix; j  represents the variance of the 
thj  rescaled variable and j  is also the thj  eigen values of the COV1 matrix; and ( )j x  is 

the eigen vectors of the COV1 matrix. The number of eigen vectors depends on the number 
of discrete intervals. This decomposition of the COV1 matrix which is called the singular 
value decomposition method can easily be done by using mathematical or statistical 
software.  

Once we have the eigen vectors, the next step is to develop suitable neural networks to 
represent or mimic these eigen vectors. In fact, it is not necessary to simulate all the eigen 
vectors. The number of neural networks is decided by the number of eigen values which are 
significant in the KL representation. In some situations, for example, we may have 100 eigen 
values in the KL representation but only 4 significant eigen values. Then, we just create four 
networks to simulate these four eigenvectors which correspond to the most significant eigen 
values. The way we decide on the number of significant eigen values is based on the 
following equation: 
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where [ ]R i  represents the contribution of the thi  eigen value in capturing the total original 
variance, k  represents the number of the significant eigen values, and Th  is the 
contribution of all significant eigen values in capturing  the total original variance. In this 
chapter, Th  is chosen to vary between 0.95 and 1. This means that if the total number of 
eigen values is 100 from the KL expansion and the contribution of the first 4 eigen values 
takes up more than 95% of the original variance, there are only four individual neural 
networks that need to be developed. 

The main factors that need to be decided in the development of neural networks are the 
number of neurons needed, the structure of neural networks and the learning algorithm. 
The number of neurons in neural networks is case-dependent. It is difficult to define the 
number of neurons before the learning stage. In general, the number of neurons is adjusted 
during training until the network output converges on the actual output based on least 
square error minimization. A neural network with an optimum number of neurons will 
reach the desired minimum error level more quickly than other networks with more 
complex structures. The proposed neural network is a Radial Basis Function (RBF) Network. 
The approximation function is the Gaussian Function given below:  

2( )( , ) r x sG s r e  ,                           (4.3.8) 

where r  and s  are constants. In this symmetric function, s  defines the centre of 
symmetry and r  defines the sharpness of Gaussian function.  

Based on numerical values of the significant eigen vectors, several RBF networks with one 
input ( x ) and one output (eigen vector) are developed to approximate each significant 

 

eigenvector. Now let us have the following function the form of which is previously given in 
equation (4.2.3) to define the RBF network, 
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where 0g  is the bias weight of the network, 1g  and kg  is the 1st  and thk  weight of the 
network, and p  is the total number of neurons in this RBF network (the reason for using 
p+1 for the summation is that k starts at 2). Figure 4.1 displays the architecture of a neural 
network for the case of one-dimensional input and  x  is used to represent the output of 
the neural network given by equation (4.3.9). 

After we decide the input-output mapping and architecture of deterministic neural 
networks, the next step is to choose the learning algorithm, i.e., the method used to update 
weights and other parameters of networks. The backpropagation algorithm is used as the 
learning algorithm in this work. The backpropagation algorithm is used to minimize the 
network’s global error between the actual network outputs and their corresponding desired 
outputs. The backpropagation leaning method is based on gradient descent that updates 
weights and other parameters through partial derivatives of the network’s global error with 
respect to the weights and parameters. A stable approach is to change the weights and 
parameters in the network after the whole sample has been presented and to repeat this 
process iteratively until the desired minimum error level is reached. This is called batch (or 
epoch based) learning.    
    

     
Figure 4.1. Architecture of the one-dimensional RBF network given by equation (4.3.9). 

Their values are based on the summation over all training examples of the partial derivative 
of the network’s global error with respect to the weights and parameters in the whole 
sample. 
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p+1 for the summation is that k starts at 2). Figure 4.1 displays the architecture of a neural 
network for the case of one-dimensional input and  x  is used to represent the output of 
the neural network given by equation (4.3.9). 

After we decide the input-output mapping and architecture of deterministic neural 
networks, the next step is to choose the learning algorithm, i.e., the method used to update 
weights and other parameters of networks. The backpropagation algorithm is used as the 
learning algorithm in this work. The backpropagation algorithm is used to minimize the 
network’s global error between the actual network outputs and their corresponding desired 
outputs. The backpropagation leaning method is based on gradient descent that updates 
weights and other parameters through partial derivatives of the network’s global error with 
respect to the weights and parameters. A stable approach is to change the weights and 
parameters in the network after the whole sample has been presented and to repeat this 
process iteratively until the desired minimum error level is reached. This is called batch (or 
epoch based) learning.    
    

     
Figure 4.1. Architecture of the one-dimensional RBF network given by equation (4.3.9). 

Their values are based on the summation over all training examples of the partial derivative 
of the network’s global error with respect to the weights and parameters in the whole 
sample. 



Computational Modelling of Multi-Scale Non-Fickian Dispersion  
in Porous Media - An Approach Based on Stochastic Calculus126

 

Now let us assume that the actual network output is T ( ( )x ), the desired network output 
is Z ( ( )x ). The network’s global error between the network output and actual output is 
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where iT  and iZ  are the actual output and the network output for the thi  training 
pattern, and N is the total number of training patterns. The multiplication by 1 / 2  is a 
mathematical convenience (Samarasinghe, 2006). 

The method of modifying a weight or a parameter is the same for all weights and 
parameters so we show the change to an arbitrary weight as an example. The change to a 
single weight of a connection between neuron j and neuron i  in the RBF network based on 
batch learning can be defined as, 
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where   is called the learning rate with a constant value between 0 and 1. It controls the 
step size and the speed of weight adjustments. k  is the total number of input vectors. The 
process that propagates the error information backwards into the network and updates 
weights and the parameters of network is repeated until the network minimizes the global 
error between the actual network outputs and their corresponding desired outputs. In the 
learning process, the weights and the parameters of the network converge on the optimal 
values.  

To illustrate the computational approach, we give some examples here. The first covariance 
kernel is chosen to be 
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where 2
1 2y x x  , 

      b is constant , and  

      2  is variance when 1 2x x . 

This covariance kernel needs a relatively lower number of significant eigen values to capture 
95% or more of the total variance; therefore we choose to work with this kernel and later we 
use two other forms of kernels: one discussed previously in Chapter 3 and other one is 
empirically based. 

Figure 4.2 displays the covariance matrix based on the covariance kernel (equation (4.3.12)) 
when 2 1 and 0.1b   . 

Table 4.1 reports all eigen values in the KL representation of the covariance matrix. The 
most of the eigen values is equal to zero and these eigen values can not affect the covariance 
matrix and just a few are significant and capture the total variance in the original data. 

 

Therefore, we need to focus on the significant eigen values as well as their corresponding 
eigen functions. There are 6 significant eigen values whose contribution takes up 99.9035% 
of the original variance and table 4.1 shows the value of each significant eigen value and the 
proportion of variance captured by the corresponding eigen value.  

Thus, the six eigenvectors corresponding to the significant eigenvalues are simulated by the 
individual RBF network. Although we use a different RBF network to approximate each of 
these six eigenvectors, the structure of RBF network is the same but the weights and 
parameters inside the individual RBF network are different.  

 
Figure 4.2. The covariance matrix calculated by the given covariance kernel (equation 4.3.12)  
when 2 1and 0.1b   . 
 

The number of eigen values Values Contribution as a propotion 

1  48.128 0.477 

2  30.636 0.303 

3  14.692 0.145 

4  5.446 0.054 

5  1.61 0.016 

6  0.392 0.004 

Table 4.1. Significant eigen values obtained from the KL expansion of the covariance kernel 
given by equation (4.3.12) (six significant eigen values take up 99.9035% of total variance) 
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Then each individual RBF network was trained to learn their related eigen vector, while the 
weights and all the parameters of Gaussian functions were updated until each network 
reaches global minimum error given by 

2

1

1
( ) ( )

1

N
i i
n n

n

x S x
N




  


   .                       (4.3.13) 

where ( )i
nS x  is an approximation to ( )i

n x , i th eigen function; and N is the total number of 
eigen values. 

Figure 4.3 displays all the six eigen functions and Table 4.2 gives their functional forms. 
Figure 4.3 shows the eigen functions given by the KL theory (dots), obtained by solving the 
corresponding integral equation, overlaid with the outputs from the neural networks (lines), 
and the approximation functions are the same as the theoretically derived functions. 

 
Figure 4.3. The approximated six eigen functions from BRF networks for equation (4.3.12) 
when 2 1   and b=0.1. 
 
For the second example, we use the same covariance kernel with 20.2 and 1b   , and 
decomposed the matrix for the domain [0, 1]. Figure 4.4 shows the covariance matrix 
calculated by the given covariance kernel. Based on the standard of choosing the number of 
significant eigen values, it can be seen that five significant eigen values together capture 
99.9582% of the original variance. Thus, there are five RBF networks to be developed for the 
corresponding eigenvectors. Table 4.3 gives the value of each significant eigen value and the 
proportion of variance captured by the corresponding eigen value; Table 4.4 provides the 
eigen functions obtained from the neural networks; the graphical forms of the eigen 
functions are given by Figure 4.5. As before, the analytically derived eigen function as an 
very well approximated by the approximations from the neural networks. (The theoretical 
eigen functions are not displayed in Figure 4.5). 

 

 

 

 

Eigen values Values The analytical forms of eigen functions  ( )i x  for  0,1x   

1  48.128 22.34049 ( 0.5)120.0456723 1.61025 10 0.170974     xx e  

2  30.636 
2

2

5.37562 ( 0.290915)

2.56631 ( 0.335246)

0.689211 0.560102 0.360116

0.745057

 

 

 



x

x

x e

e
 

3  14.692 
2

2 2

6.62157 ( 0.703168)

6.6592 ( 0.683601) 9.56556 ( 0.0999343)

0.00132933 0.0185462 3.7566 

3.7712 0.183884

 

   

  

 

x

x x

x e

e e
 

4  5.446 
2

2 2

13.4883 ( 0.68965)

14.6016 ( 0.306358) 0.385895 ( 0.699959)

10.4236 5.90955 0.3771 

0.282871 12.8992 

 

   

 

 

x

x x

x e

e e
 

5  1.61 

2

2 2

2

8.95446 ( 0.727565)-14

8.41938 ( 0.5) 5.67596 ( 0.5)

8.95446 ( 0.272435)

0.0403405 3.13566 10  9.47326 

19.0735 31.1501

9.47326 

 

   

 

  

 



x

x x

x

x e

e e

e

 

6  0.392 

2

2 2

2

7.08944 ( 0.658744)

5.57986 ( 0.511944) 5.3708 ( 0.46363)

8.18627 ( 0.433595)

0.318516 0.548883 127.699 

429.099 237.989

88.8399 

 

   

 

  

 



x

x x

x

x e

e e

e

 

Table 4.2. The final formula from the developed RBF networks to approximate each 
significant eigen vector and their corresponding eigen values. 

 

Figure 4.4. The covariance matrix of equation (4.3.12) when 2 1   and b = 0.2. 
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Then each individual RBF network was trained to learn their related eigen vector, while the 
weights and all the parameters of Gaussian functions were updated until each network 
reaches global minimum error given by 
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where ( )i
nS x  is an approximation to ( )i

n x , i th eigen function; and N is the total number of 
eigen values. 

Figure 4.3 displays all the six eigen functions and Table 4.2 gives their functional forms. 
Figure 4.3 shows the eigen functions given by the KL theory (dots), obtained by solving the 
corresponding integral equation, overlaid with the outputs from the neural networks (lines), 
and the approximation functions are the same as the theoretically derived functions. 

 
Figure 4.3. The approximated six eigen functions from BRF networks for equation (4.3.12) 
when 2 1   and b=0.1. 
 
For the second example, we use the same covariance kernel with 20.2 and 1b   , and 
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Table 4.2. The final formula from the developed RBF networks to approximate each 
significant eigen vector and their corresponding eigen values. 

 

Figure 4.4. The covariance matrix of equation (4.3.12) when 2 1   and b = 0.2. 
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Eigen values Values Contribution as a proportion 
1  61.242 0.606 

2  28.820 0.285 
3  8.747 0.087 

4  1.853 0.018 
5  0.29597 0.00293 

Table 4.3. Relative amounts of variance in the data captured by each significant eigenvalue 
obtained from the KL expansion of equation (4.3.12) when 2 1  and b=0.2. 
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Table 4.4. The eigen functions from the developed RBF networks to approximate each 
significant eigen vector for the kernel given by equation (4.3.12) when 2 1   and b=0.2. 

 
Figure 4.5. The approximated six eigen functions from BRF networks for equation (4.3.12) 
when 2 1 and 0.2b   . 

From the previous two examples, we have seen that the covariance kernel given by equation 
(4.3.12) provides a relative small number of eigen functions and therefore one may say that 
the kernel given by equation (4.3.12) has fast convergence. This is quite a desirable property 
to have, especially in terms of computational efficiency of the algorithms. In the next 
example, we find the eigen values and the eigen functions of the covariance kernel we use in 

 

the development of the SSTM in Chapter 3. In Chapter 3 the covariance kernel given by 
equation (4.3.14) - we reproduce the equation here- constitutes an integral equation which 
we solve analytically to obtain eigen values and eigen functions: 

1 2
2

1 2( , )
x x

bg x x e
 


 ,                         (4.3.14) 

when 2  and b have the same meanings as before. 

This covariance kernel is depicted graphically in Figure 4.6. 

 
Figure 4.6. The covariance matrix calculated by the given equation (4.3.14) under the 
condition 2 1  . 
 

Eigen values Values Contribution as a proportion 

1  18.745 0.186 

2  15.681 0.155 

3  12.218 0.121 

4  9.241 0.091 

5  6.976 0.069 

6  5.332 0.053 

7  4.149 0.041 

8  3.293 0.033 
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9  2.661 0.026 

10  2.188 0.022 

11  1.826 0.018 

12  1.545 0.015 

13  1.323 0.013 

14  1.145 0.011 

15  0.9999 0.0099 

16  0.881 0.0087 

17  0.782 0.0077 

18  0.699 0.0069 

19  0.628 0.0062 

20  0.568 0.0056 

21  0.516 0.0051 

22  0.471 0.0047 

23  0.432 0.0043 

24  0.398 0.0039 

25  0.367 0.0036 

26  0.341 0.0034 

27  0.317 0.0031 

28  0.295 0.0029 

29  0.276 0.0027 

30  0.259 0.0026 

31  0.244 0.0024 

32  0.229 0.0023 

Table 4.5. The eigen values for the kernel given by equation (4.3.14) (32 significant eigen 
values which take up 94.29% of original variance) 

 

 

In Table 4.5, we give the 32 eigen values which capture up to 94% of the only original 
variance; Table 4.6 gives only the first six eigen functions obtained from the networks for 
brevity. Figure 4.7 shows the first eight eigen functions. 
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Table 4.6. The final formula from the developed RBF networks to approximate the first 8 
significant eigen vectors and their corresponding eigen values. 
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Table 4.6. The final formula from the developed RBF networks to approximate the first 8 
significant eigen vectors and their corresponding eigen values. 
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Figure 4.7. The approximated first eight eigen functions from RBF network for the equation 
(4.3.14) when 2 1   and 0.1b   . 

We can also use an empirically derived covariance kernel. As an example, let us consider 
equation (4.3.15). 
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1 2
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x x for x x

Cov x x x x for x x

for x x
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
      


  

,            (4.3.15) 

Equation (4.3.15) is depicted in Figure 4.8, and Figure 4.9 shows the corresponding 
covariance matrix. 

Table 4.7 gives the most significant eigen values (the first nine values); Table 4.8 shows the 
functional forms of eigen functions and Figure 4.10 shows the graphical forms of eigen 
functions. 

 
Figure 4.8. An empirical distribution. 

 
Figure 4.9. The covariance matrix given by the empirical distribution (equation (4.3.15)). 
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Figure 4.7. The approximated first eight eigen functions from RBF network for the equation 
(4.3.14) when 2 1   and 0.1b   . 
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Eigen values Values Contribution as a proportion 

1  66.022 0.6537 

2  24.216 0.2398 

3  3.163 0.0313 

4  1.989 0.0197 

5  0.447 0.0189 

6  0.445 0.00443 

7  0.395 0.0044 

8  0.390 0.00391 

9  0.201 0.00386 
Table 4.7. Relative amount of variance in the data captured by each significant eigen value for 
the kernel in equation (4.3.15). (9 significant eigen values capture 98% of original variance) 
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Table 4.8. The final formulas from the developed RBF networks to approximate each 
significant eigenvector and their corresponding eigen values. 

 
Figure 4.10. The approximated nine eigenfunctions from the BRF networks for the kernel 
given in equation (4.3.15). 

We have seen that some covariance kernels provide relatively small number of significant 
eigen values for the given domain [0,1] and whereas for others, obtaining the significant 
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Table 4.8. The final formulas from the developed RBF networks to approximate each 
significant eigenvector and their corresponding eigen values. 

 
Figure 4.10. The approximated nine eigenfunctions from the BRF networks for the kernel 
given in equation (4.3.15). 

We have seen that some covariance kernels provide relatively small number of significant 
eigen values for the given domain [0,1] and whereas for others, obtaining the significant 
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eigen functions could be tedious. The main point in this exercise is to show that any given 
covariance kernel can be used to obtain the eigen functions of the form given by equation 
(4.2.3). A corollary to this statement is that if we express the eigen functions in the form 
given by equation (4.2.3), then we can assume that these is an underlying covariance kernel 
responsible for these eigen functions. In deriving the SSTM in the form of equation (4.2.15), 
we assume that the form of equation (4.2.3) is given. But we see now that any covariance-
kernel driven SSTM can be represented by equation (4.2.15). 
 

4.4 Effects of Different Kernels and xh  
We have seen in sections 4.2 and 4.3 that the SSTM developed in Chapter 2 and 3 can be 
recasted so that we could employ any given velocity kernel. In fact, we can even use an 
empirical set of data for the velocity covariance. We can anticipate that the generalized 
SSTM would behave quite similar to the one developed in Chapter 2 given that same 
covariance kernel is used. We compute the 95% confidence intervals for the concentration 
breakthrough curves (concentration realizations) at x = 0.5 m when the flow length is 1 m 
to compare the differences that occur in using different kernels in the generalized SSTM. The 
mean velocity is kept constant at 0.5 m/day, and the covariance kernel given by equation 
(4.3.14) is used to obtain Figure 4.11, and Figure 4.12 is obtained by employing the kernel, 

 21 2
2

x x
be

 


. First, the confidence intervals shown in Figure 4.11 are very similar to those 
ones could obtain by using the SSTM developed in Chapter 2. Comparing the effects of the 
kernels on the behaviours of the generalized SSTM, we see that the confidence interval 
bandwidth in Figure 4.12 is almost non-existent. The reason is that the kernel used has a 
faster convergence when decomposed in the eigen vector space. For smaller values of  , 
the randomness in the concentration realization are minimal but as 2  is increased, we see 
increased randomness in the realizations. This also allows us to use the kernel used in 
Figure 4.12 for larger scale computations. We conclude that the choice of the velocity 
covariance kernel has a significant effect on the behaviour of the generalized SSTM 
increasing the flexibility of the SSTM. 
 

2  b  
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1 2
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x x
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0.001 0.1 0.02699 0.05199 0.02513 0.05025 

0.01 0.1 0.03059 0.06117 0.02782 0.05361 

0.1 0.1 0.06852 0.13705 0.06407 0.12815 

Table 4.9. Comparison of the dispersivity values for the two kernels. 

 

 

We investigate the effects of the kernels on the dispersivity values; we compute them using 
the stochastic inverse method (SIM) discussed in Chapter 3. Table 4.9 shows the results. For 
all practical purposes they are essentially the same. The mechanic of dispersion is more 
influenced by 2  for a given b  or if both 2  and b  are allowed to vary, on both 2  
and b . The mechanics of dispersion in general can also be assumed to be influenced by the 
mathematical form of the kernel. The both of these kernels are exponential decaying 
functions. Because of the case of computations, we continue to use kernel 2 in Table 4.9 in 
the most of the work discussed in this book. 
 

 
Figure 4.11. The generalized SSTM 95% confidence intervals for the concentration 

realization for the kernel, 
1 2

2
x x
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

 when 2 = 0.1 and b =0.1. 

 
Figure 4.12. The generalized SSTM 95% confidence intervals for the concentration 

realization for the kernel, 
 21 2
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 when 2 = 0.1 and b =0.1. 
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4.5 Analysis of Ito Diffusions  ,iI x t  

We have developed the Ito diffusions  ,iI x t  in section 4.2 (see equation (4.2.20)), and we 
rewrite the diffusions in the differential form: 

       
1

, , , ,
m

i i ij j
j

dI x t F x t dt G x t db t


    for  0,1,2i   and  1,..., .j m     (4.5.1) 

In equation (4.5.1),  ,iF x t  are given by equations (4.2.21), (4.2.22) and (4.2.23), which can 
be considered as regular continuous and differentiable functions of x  and t  because we 
assumed the mean velocity   ,V x t  to be a continuous, differentiable function with finite 

variation in the development of the SSTM. 

For many situations, we can assume   ,V x t  to be a function of x  alone, and some 

regions of x  it can be considered as a constant. ijG ’s are continuous differentiable 
functions of x  only, with finite variation with respect to x  (see equations (4.2.24) to 
(4.2.26)). Therefore, for a fixed value of x , we can write equation (4.5.1) as, 

     , , ,
1

,
m

x i x i x ij j
j

dI t F t dt G db t


     0,1,2i   and  1,..., .j m         (4.5.2) 

From the derivation of equation (4.2.19), we see that the  jdb t s  are the same standard 

Wiener process increments for each ,x iI  and each  jdb t : equation (4.5.2) is a diffusion in 

m dimensions, and we can write  xI t  as a multidimensional stochastic differential 
equation (SDE) (Klebaner, 1998). 

In coordinate form we can write, 
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  

               (4.5.3) 

In matrix form, we can write, 

   x x xdI t F dt G dB t                            (4.5.4) 
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The drift and diffusion coefficients of the multi-dimensional SDEs are vector xF  and the 
matrix xG  is independent of t , and the drift coefficient xF  can also be assumed to be 
independent of t  in many cases. Therefore, equation (4.2.4) is a linear multi-dimensional 
SDE. The associated with this SDE, the matrix a  called the diffusion matrix can be defined,   

  Tx xa G G                               (4.5.5) 

when superscript T  indicates the transposed matrix. Under the conditions such as the 
coefficients use locally Lipschitz, equation (4.5.4) has strong solutions (see Theorem 6.22 in 
Klebaner (1998)). 

The diffusion matrix, a , is important to obtain the covariation of xI : 
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a  is a symmetric matrix. 

In obtaining equation (4.2.6), we employ the fact that independent Brownian motions have 
quadratic covariation. The most important use of quadratic covariation is that we can 
determine the movement of  xI t  with respect to time using the following well known 
results for Ito diffusions, which are also continuous Markov processes. It can be shown that, 
for an infinitesimal time increment, 
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4.5 Analysis of Ito Diffusions  ,iI x t  
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rewrite the diffusions in the differential form: 

       
1

, , , ,
m

i i ij j
j

dI x t F x t dt G x t db t


    for  0,1,2i   and  1,..., .j m     (4.5.1) 

In equation (4.5.1),  ,iF x t  are given by equations (4.2.21), (4.2.22) and (4.2.23), which can 
be considered as regular continuous and differentiable functions of x  and t  because we 
assumed the mean velocity   ,V x t  to be a continuous, differentiable function with finite 

variation in the development of the SSTM. 

For many situations, we can assume   ,V x t  to be a function of x  alone, and some 

regions of x  it can be considered as a constant. ijG ’s are continuous differentiable 
functions of x  only, with finite variation with respect to x  (see equations (4.2.24) to 
(4.2.26)). Therefore, for a fixed value of x , we can write equation (4.5.1) as, 

     , , ,
1

,
m

x i x i x ij j
j

dI t F t dt G db t


     0,1,2i   and  1,..., .j m         (4.5.2) 
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matrix xG  is independent of t , and the drift coefficient xF  can also be assumed to be 
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SDE. The associated with this SDE, the matrix a  called the diffusion matrix can be defined,   
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In obtaining equation (4.2.6), we employ the fact that independent Brownian motions have 
quadratic covariation. The most important use of quadratic covariation is that we can 
determine the movement of  xI t  with respect to time using the following well known 
results for Ito diffusions, which are also continuous Markov processes. It can be shown that, 
for an infinitesimal time increment, 
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and when i j , equation (4.6.8) becomes, 
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As the solution to the SDE equation (4.5.4) exists, from equation (4.5.8) it is seen that xF  is 
the form of xI  at time t , and a  is the coefficients in the covariance of the infinitesimal 
displacement from xI . Using those results we can construct the realizations of  xI t  by 

using the fact that  xI t  are Gaussian processes. By dividing a given time interval into 
equidistant infinitesimal time interval,  , we can generate normally distributed xdI  
increments for a given x , using the mean and variance obtained by equations (4.5.7) and 
(4.5.9). It should be noted that in generating the standard Wiener process increments, we use 
the zero-mean and  -variance Gaussian increments. 

We take   0xI t   when 0t   because  
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Figure 4.13 shows some realizations of  xI t  when 0.5x  . 
 

 
Figure 4.13. Some realizations of  xI t  when 0.5x  . 

The increments of  xI t  are Gaussian random variables having the mean and variance 
given by equations (4.5.7) and (4.5.8). 

The SDE given in equation (4.5.4) is linear and strong solutions do exist. When ,x iF  are not 
functions of t , then the solution of equation (4.5.4) is given by 

   .x x xI t F t G B t                           (4.5.11) 

 

Equation (4.5.11) provides realizations which have the statistical properties of the 
realizations depicted in Figure 4.13. The vector  B t  consists of independent Wiener 
processes; Figure 4.14 shows some realizations based on equation (4.5.11). 

The statistical properties of these realizations are essentially the same to those of the 
realizations given in Figure 4.13. 

As we have mentioned earlier,  xI t  are only dependent on the velocity patterns in the 
medium, and it is important ask the question how the correlation length, b , affects the 

realization of  xI t . (In this discussion we focus on the kernel 
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 

 only). It is seen 
that   (the square root of the variance of the kernel) acts as the multiplication factor to the 
diffusion form of the SDE given in equation (4.5.11). However, the correlation length b  
influence  xI t  nonlinearly through xG , but this influence can always be captured by 
suitable changes in   . Therefore, we can keep b at a constant value that is appropriate for 
the porous medium under study. We found that b =0.1 is suitable for our computational 
experiments in this chapter as well as in chapters 6, 7 and 8. 
 

 

Figure 4.14. Some realization of  xI t  for fixed ,x iF s  when 0.5x   based on equation (4.5.11). 

Equation (4.5.11) can be written in component forms, 
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In the above equations, m  is the number of significant eigen functions and is dependent on 
b . From equation (4.2.24), (4.2.25) and (4.2.26), we see that ijG  are related to  ijP x  which 
are given by equations (4.2.10), (4.2.11) and (4.2.12). For 0.05b  , 8m  , Figure 4.15 give 

 ijP x s  when 0.0 1.0x  . The following observations can be noted from Figure 4.15: (a) 

ijP s , therefore ijG s  are sinesodial in nature; (b) amplitutes of ijP s  increase with m  (eigen 
function number) but as eigen values decrease with m , ijG s  diminish with m  (not 
shown); (c) 2 jP s  are insignificant in comparision to 0 jP s  and 1 jP s  and therefore could be 
ignored; and (d) frequency of ijP  functions increases as m  increase. 

 
Figure 4.15. The approximated  ijP x s  given by equations (4.2.10), (4.2.11) and (4.2.12) 
when 0.0 1.0x   for 0.05b  . 

 

 
Figure 4.16. The approximated  ijP x s  given by equations (4.2.10), (4.2.11) and (4.2.12) 
when 0.0 1.0x   for 0.1b  . 

When 0.1b  , the required number of significant eigen values is reduced to 6 and ijP  
functions are depicted in Figure 4.16. Similar observation as before, when 0.05b  , can be 
made. Figure 4.17 shows ijP  functions when 0.2b  , and now the number of significant 
eigen values is 5 (i.e, 5m  ). The same observations can be made for ijP  s when 0.2b  . 

We produce the 3-dimensional graphs of ijP  when 0,1i   and 1,2,3,4,5j   in Figure 
4.18 and Figure 4.19; b  is plotted as the y-axis. As one could expect, it is reasonable to 
assume that function surface of ijP  is a smooth, continuous function of b . We can define 
continuous functions of x  and b  to define 2 jP s . 
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Figure 4.17. The approximated  ijP x s  given by equations (4.2.10), (4.2.11) and (4.2.12) 
when 0.0 1.0x   for 0.2b  . 

 

 

 

 

 

 
Figure 4.18. The 3-dimensional graphs of ijP  when 0i   and 1,2,3,4,5j   
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Figure 4.17. The approximated  ijP x s  given by equations (4.2.10), (4.2.11) and (4.2.12) 
when 0.0 1.0x   for 0.2b  . 

 

 

 

 

 

 
Figure 4.18. The 3-dimensional graphs of ijP  when 0i   and 1,2,3,4,5j   
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Figure 4.19. The 3-dimensional graphs of ijP  when 1i   and 1,2,3,4,5j   

As we recall that the SSTM can be expressed as a diffusion process with martingale 
properties in time dimensions when another set of diffusion processes,  xI t  are used: 
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             (4.5.13) 

We need to interpret this equation as follows: the solute concentration at a given point x  
consists of a combination of three diffusion processes which are solely based on velocity. 

The spatial influence on the concentration is mediated through the prevailing concentration, 
and its spatial gradients. In keeping with the Ito definition of stochastic integration 
(Klebaner, 1998) we must use the concentration and its spatial gradients at a previous time. 
As a difference equation, we can write equation (4.5.13) as, 
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where nt  denotes the discretized time and the spatial gradients act as the coefficients of 

 xdI t , and therefore can be written as, 
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Figure 4.19. The 3-dimensional graphs of ijP  when 1i   and 1,2,3,4,5j   

As we recall that the SSTM can be expressed as a diffusion process with martingale 
properties in time dimensions when another set of diffusion processes,  xI t  are used: 
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We need to interpret this equation as follows: the solute concentration at a given point x  
consists of a combination of three diffusion processes which are solely based on velocity. 

The spatial influence on the concentration is mediated through the prevailing concentration, 
and its spatial gradients. In keeping with the Ito definition of stochastic integration 
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As 2 jP  functions are insignificant compared to the other two functions, we can 
approximate equation (4.5.15) as 
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.                     (4.5.16) 

This approximation enables us to reduce the computational time further in obtaining 
solutions. 

Equation (4.2.3) gives the general form of eigen functions,  jf x s. By inspecting equation 
(4.2.10), (4.2.11) and (4.2.12), we can deduce the following relationships between ijP  s and jf  s:  
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Therefore ijG  are given by, 
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The components of diffusion matrix a  (see equation (4.5.5)) can be written as, 
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ija s  can also be evaluated using equation (4.5.24). 

This menas that once we have eigen functions in the form given by equation (4.2.3), the 
diffusion matrix a  can be evaluated and equation (4.5.7) and (4.5.9) can be used to 
calculate the strong solutions for   xI t . 
 

4.6 Propagator of  xI t  

The propagator of  xI t  can be defined as  

       , , , ,; , .i x i x i x i x it I t t I t t I I t                         (4.6.1) 

i  denotes the displacement of  ,x iI t  during the infinitesimally small time interval t  

given the position (value) of  ,x iI t  at time t . As  ,x iI t  is an Ito diffusion, it is also a 

Markov process; the propagator   ,; ,i x it I t t   is also a Markov process having a 
Gaussian probability density function, which completely specifics the propagator variable. 
To abbreviate the notation, we denote the propagator as  i t  . It can be shown that the 

moments of  i t   has the analytical structure (Gillespie,1992), 
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when nB s are well behaved functions of t  for a given  ,x iI t  (  nB t  are also called the n 

th propagator moment function.) ; and  P t   is the probability density function of 

 i t  . 

It can be shown that, for a given value of  ,x iI t  at time t , the mean and variance of the 
propagator function can be expressed as follows (Gillespie, 1992): 

       ,i iE t A t t t       and                   (4.6.3) 

       ,i iVar t D t t t                             (4.6.4) 
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As 2 jP  functions are insignificant compared to the other two functions, we can 
approximate equation (4.5.15) as 
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This approximation enables us to reduce the computational time further in obtaining 
solutions. 

Equation (4.2.3) gives the general form of eigen functions,  jf x s. By inspecting equation 
(4.2.10), (4.2.11) and (4.2.12), we can deduce the following relationships between ijP  s and jf  s:  
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ija s  can also be evaluated using equation (4.5.24). 

This menas that once we have eigen functions in the form given by equation (4.2.3), the 
diffusion matrix a  can be evaluated and equation (4.5.7) and (4.5.9) can be used to 
calculate the strong solutions for   xI t . 
 

4.6 Propagator of  xI t  

The propagator of  xI t  can be defined as  
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i  denotes the displacement of  ,x iI t  during the infinitesimally small time interval t  

given the position (value) of  ,x iI t  at time t . As  ,x iI t  is an Ito diffusion, it is also a 

Markov process; the propagator   ,; ,i x it I t t   is also a Markov process having a 
Gaussian probability density function, which completely specifics the propagator variable. 
To abbreviate the notation, we denote the propagator as  i t  . It can be shown that the 

moments of  i t   has the analytical structure (Gillespie,1992), 
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when nB s are well behaved functions of t  for a given  ,x iI t  (  nB t  are also called the n 

th propagator moment function.) ; and  P t   is the probability density function of 

 i t  . 

It can be shown that, for a given value of  ,x iI t  at time t , the mean and variance of the 
propagator function can be expressed as follows (Gillespie, 1992): 
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when  iA t  and  iD t  are independent of t . As the variance can not be negative, 

 iD t  should be a non-negative function. As mentioned before,  i t   is a Gaussian 
variable, i.e., it is normally distributed; therefore, we can write, 

      , ,i i it N A t t D t t                           (4.6.5) 

where  “  ” indicates the random variable is generated from the normal density function 
having the mean,  iA t t  and the variance  iD t t . 

If we recall, equation (4.5.9) gives, 
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, , , .x i x i x i iiE I t I t I t a t                          (4.6.6) 

This can be written as, 
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, .i x i iiE t I t a t                              (4.6.7) 

when ,t t  i.e., 0,t   therefore   0i t   . 

 / 0iE t    at ,t t . 

This leads to  

    .i iiVar t a                                (4.6.8) 

By comparing equation (4.5.7) with equation (4.6.3), and equation (4.6.4) with equation 
(4.6.8), we deduce that, 

  , ,i x iA t F  and                              (4.6.9) 

  .i iiD t a                                (4.6.10) 

We can now write the Langevin equation for the Ito diffusion,  ,x iI t . 
 

4.7 Langevin Equation for  ,x iI t  
From equation (4.6.1), the propagator can be written as, 

     , , , ,x i x i x idI t I t t I t     for a given  ,x iI t .            (4.7.1) 

At the same time, we can write equation (4.6.5) as, 
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1

2
, , ,x i ii x idI t N a t t F t                             (4.7.2) 

where N  is a unit normal random variable generated from  0,1N  density function. In 
the limit, 0,t   
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, , .x i x i iidI t F dt a t dt N                        (4.7.3) 

This is the first form of the Langevin equation for  ,x iI t . 

It can be shown that, if  0,1 ,N Normal  

 2, ,N Normal                                (4.7.4) 

Therefore, dtN  is a normally distributed random variable having the density function 
 0, .Normal dt  This is the density function of the standard Wiener process increments, 

 dw t . Therefore, we can rewrite equation (4.7.3) as, 

   , , .x i x i ii idI t F dt a dw t                             (4.7.5) 

Equation (4.7.5) is the second form of the Langevin equation. 

The advantage of this Langevin approximation for  ,x iI t  over equation (4.5.2) is that it is 
not a multidimensional SDE but a one-dimensional one. This would allow us to compute 

 ,x iI t s more efficiently. 

The moment evolution equations for  ,x iI t  can be given as follows: (See Gillespie (1992) 
for derivations.) 
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with initial conditions, 

 , 0 0,x iE I     and                           (4.7.8)     

 , 0 0.x iVar I                                (4.7.9) 

If ,x iF  and iia  are deterministic functions of x  then the moment evolution equations can 
be simplified to equations (4.5.7) and (4.5.8). 
 

4.8 The Evaluation of  xC t  Diffusions 
The SSTM can be written as, for given x , (see equation (4.5.13)), 
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when  iA t  and  iD t  are independent of t . As the variance can not be negative, 

 iD t  should be a non-negative function. As mentioned before,  i t   is a Gaussian 
variable, i.e., it is normally distributed; therefore, we can write, 

      , ,i i it N A t t D t t                           (4.6.5) 

where  “  ” indicates the random variable is generated from the normal density function 
having the mean,  iA t t  and the variance  iD t t . 

If we recall, equation (4.5.9) gives, 
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By comparing equation (4.5.7) with equation (4.6.3), and equation (4.6.4) with equation 
(4.6.8), we deduce that, 
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We can now write the Langevin equation for the Ito diffusion,  ,x iI t . 
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   
1

2
, , ,x i ii x idI t N a t t F t                             (4.7.2) 

where N  is a unit normal random variable generated from  0,1N  density function. In 
the limit, 0,t   
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 2, ,N Normal                                (4.7.4) 
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Equation (4.7.5) is the second form of the Langevin equation. 
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with initial conditions, 
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 , 0 0.x iVar I                                (4.7.9) 

If ,x iF  and iia  are deterministic functions of x  then the moment evolution equations can 
be simplified to equations (4.5.7) and (4.5.8). 
 

4.8 The Evaluation of  xC t  Diffusions 
The SSTM can be written as, for given x , (see equation (4.5.13)), 
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where subscript x  refers to the first and second derivatives with respect to x . Note that 
the coefficients are functions of t  for given x , and ,x iI  s are Ito diffusions based on the 
velocity structure. Equation (4.8.1) is a stochastic diffusion and a SDE which displays the 
interplay between the concentration profile and velocity structures in the medium. By 
substituting the equations of the form of equation (4.7.5) for ,x idI s we obtain, 
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In equation (4.8.2), 0 1,dw dw  and 2dw  are independent standard Wiener increments. 

Equation (4.8.2) can be written as, 
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Now the equation (4.8.3) can be written as 
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Equation (4.8.6) gives a diffusion matrix, 

  0 1 2 0 1 2

2 2 2
0 1 2
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Following Klebaner (1998), the expectations of infinitesimal differences of  xC t  can be 
written as (see also equation (4.5.7) and (4.5.9)), 

        x x xE C t C t C t           ,                 (4.8.8) 
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Following the same arguments as in the case of deriving the Langevin equation for  ,x iI t , 

we can obtain the Langevin equation for  xC t : 

   2 2 2
0 1 2 ,xdC t dt dw t                           (4.8.10) 

where  dw t  is independent increments of the standard Wiener process, and if  

2 2 2
0 1 2 ,x       then 

   .x xdC t dt dw t                           (4.8.11) 

This shows that the concentration at given x  can be characterised by a Langevin type 
stochastic differential equation. This equation can be used to develop numerical solutions of 
the concentration profiles. 

The time evolution of the probability density function of  xC t ,   0, , ,x x xP C t C t t  is 
described by Fokker-Plank equation (Klebaner, 1998; Gillespie, 1992). The Fokker-Plank 
equation for  0 0, ,xP y t y t  is, 
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where y  denotes  xC t  and xP  stands for  0 0, ,xP y t y t . 

Equation (4.8.12) has the initial condition, 

   0 0 0 0, , ,P y t t y t y y                         (4.8.13) 

where   is the Dirac-delta function. 

Once we solve the Fokker-Plank equation (4.8.12) along with its initial condition, the time 
evolution of probability density function can be found. This is also a weak solution to 
equation (4.8.10). Equation (4.8.10) also has strong solutions which can be obtained by 
integrating the SDE (4.8.11) using Ito integration. The drift coefficient    in equation 
(4.8.11) is a stochastic variable in x  and t . 
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evolution of probability density function can be found. This is also a weak solution to 
equation (4.8.10). Equation (4.8.10) also has strong solutions which can be obtained by 
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(4.8.11) is a stochastic variable in x  and t . 
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Similar to equations (4.7.6) and (4.7.7), we can write time evolution of the moments  xC t . 
The derivation of these equations are very similar to those given by Gillespie (1992). 

The time evolution of the mean of  xC t  is given by, 

     xd E C t
E

dt
  ,                     (4.8.14) 

therefore,      
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0

.
t

xE C t E dt                            (4.8.15) 

The mean of  xC t  at a given x  is expressed as an integral of the expectation of   . As 

can be seen from equation (4.8.4),   is not only dependent on  xC t  and its first and 
second derivatives with respect to x , but also dependent on the mean velocity and its first 
and second derivatives with respect to x , according to equations (4.2.20), (4.2.21) and 
(4.2.22). The initial condition for equation (4.8.15) is  0xC , the value of the concentration at 
time is zero for a given x . 

The evolution of the variance of       ,x xC t Var C t  is given by, 
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          ,            (4.8.16) 

and the variance of  xC t  can be obtained by integrating equation (4.8.16) with respect to t , 
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By Fubini’s theorem (Klebaner,1998), for continuous stochastic variable such as  ,  xC t  
and x , we can rewrite equation (4.8.17) as, 
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          (4.8.18) 

In equation (4.8.18), Fubini’s theorem is only applied to the first and third term of equation 
(4.8.17). 

Once we evaluate the mean and variance of  xC t , we can obtain the probability density 

function,  0 0, ,xP y t y t  of  xC t  (y represents the value of  xC t ). As Ito diffusions are 

Martingales with Markovian properties (Klebaner, 1998), and  xC t  is Gaussian, 
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when  E y  and  Var y  are given by equations (4.8.15) and (4.8.18). When time is zero, 

  0 1.0.x xP C   

Equation (4.8.19) should also be the solution to the Fokker-Plank equation (4.8.12). The 
Fokker-Plank equation (4.8.12) is a stochastic partial differential equation for which 
analytical equations can not easily be obtained. Therefore, we can make use of this fact to 
verify the numerical solutions for the Fokker-Planck equation. 

 

4.9 Numerical Solutions 
We have seen in the previous section 4.8, the following SDE gives the time course of 
concertration  xC t for a given x in the vicinity of x: 

    ,x xdC t dt dw t                               (4.9.1) 

where  dw t  is the standard Wiener increments with a zero mean and dt  variance, if dt  
is sufficiently small; the drift coefficient   is given by (see equation (4.8.4)), 
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In equation (4.9.2), 
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and, 

 ,3 , ;
2
x

x
hF V x t                            (4.9.5) 

where  ,V x t  in the mean velocity which is assumed to be regular differentiable 
continuous function. 

x  in equation (4.9.1) is given by, 
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2 2 2 2
0 1 2 ,x                               (4.9.6) 

where, 

 0 00 ,xC t a                              (4.9.7) 
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function,  0 0, ,xP y t y t  of  xC t  (y represents the value of  xC t ). As Ito diffusions are 

Martingales with Markovian properties (Klebaner, 1998), and  xC t  is Gaussian, 
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when  E y  and  Var y  are given by equations (4.8.15) and (4.8.18). When time is zero, 

  0 1.0.x xP C   

Equation (4.8.19) should also be the solution to the Fokker-Plank equation (4.8.12). The 
Fokker-Plank equation (4.8.12) is a stochastic partial differential equation for which 
analytical equations can not easily be obtained. Therefore, we can make use of this fact to 
verify the numerical solutions for the Fokker-Planck equation. 

 

4.9 Numerical Solutions 
We have seen in the previous section 4.8, the following SDE gives the time course of 
concertration  xC t for a given x in the vicinity of x: 
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where  dw t  is the standard Wiener increments with a zero mean and dt  variance, if dt  
is sufficiently small; the drift coefficient   is given by (see equation (4.8.4)), 
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In equation (4.9.2), 

   2

,0 2

, ,
,

2
x

x
V x t V x thF
x x

 
 

 
                        (4.9.3) 

   
,1

,
, ,x x

V x t
F V x t h

x


 


                         (4.9.4) 

and, 
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where  ,V x t  in the mean velocity which is assumed to be regular differentiable 
continuous function. 

x  in equation (4.9.1) is given by, 
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where, 
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The following equation gives the expressions of 00 11,a a , and 22a , 
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where m  is the number of effective eigen functions, and  

, ( ,0,1,2).ij j ijG P i                         (4.9.10) 

In the numerical solutions, we make use of the finite differences, for a given dependent 
variable, say U , based on the grid given in Figure 4.20 
 

 
Figure 4.20. Space-time grid used in the numerical solutions with respect to y 
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By using a numerical scheme developed, we obtain realizations of  xC t  as strong 
solutions to equation (4.9.1). We can also obtain solutions to the Fokker-Plank equation 
(4.8.12) using the same finite differences. 
 

4.10 Remarks for the Chapter 
In this Chapter, we develop a generalized form of SSTM that can include any arbitrary 
velocity covariance kernel in principle. We have demonstrates that for a given kernel, a 
generalized analytical forms for eigen functions can be obtained by using the computational 
methods developed. We have also developed a Langevin form of the SSTM for a given x , 
and the time evolution of concentration,  xC t , follows a stochastic differential equation 

having the coefficients   and x  which are again functions of  xC t  and eigen 

functions. In other words, if one monitors the concentration  xC t  at a given point in 
space, the data collected along with time would constitute a realization of the strong 
solution of the SDE. The solution is a function of the covariance kernel, i.e. a function of 2  
and b  for an exponentially decaying kernel, and also a function of  xC t  itself and its 
first- and second derivatives with respect to x . This focus of SDE provides a very 
convenient and computationally efficient way to solve the stochastic partial differential 
equation associated with the SSTM. 

By deriving a Langevin form of the SSTM, we essentially prove that any time course of the 
concentration at a given point behaves according to the underlying SDE, which would 
characterize the nature of local porous medium and is a statement of mass concentration of 
the solute. 
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5 

 
Theories of Fluctuations and Dissipation 

 
5.1 Introduction 
In the previous chapters, we see that the hydrodynamic dispersion is in fact a result of 
solute particles moving along a decreasing pressure gradient and encountering the solid 
surfaces of a porous medium. The pressure gradient provides the driving force which 
translates into kinetic energy, and the porous medium acts as the dissipater of the kinetic 
energy; any such energy dissipation associated with small molecules generates fluctuations 
among molecules. Looking at a molecular-level picture, the dissolved solute particles in 
water travelling through the porous medium slow down nearing a surface and then increase 
in velocity once the molecules get scattered after the impact with solid surface. Refining this 
picture a bit more, we see that the velocity boundary layers along the solid surfaces are 
helping this process. Not all the molecules hit solid surfaces either; some of these would be 
subjected to micro-level local pressure gradients and move away from the surfaces. A 
physical ensemble of these solute molecules would depict behaviours that are measurable 
using appropriate extensive variables. (Extensive variables depend on the extent of the 
system of molecules. i.e., the number of molecules, concentrations, kinetic energy etc., where 
as intensive variables do not change with size of the system, i.e., pressure, temperature, 
entropy etc.) These measurable quantities at macroscopic level have origins in microscopic 
level. Therefore, we can anticipate that molecular level description would justify the 
operational models that we develop at an ensemble level. Naturally one could expect that 
the statistical moments of the variables of an ensemble would lead to meaningful models of 
the process we would like to observe. 

In the development of the SSTM, we express the velocity of solute as the sum of the mean 
velocity and a fluctuating component around the mean. The mean velocity may then be 
evaluated by using the Darcy’s law. We then express the fluctuating component in terms of 
the spectral expansion dependent on a covariance kernel. However, we need to understand 
that this type of picture in a more fundamental way should be based on the established 
theories. Towards that end, in this chapter, we review some of the fundamental theoretical 
frameworks associated with molecular fluctuation. We show the connectivity of 
thermodynamical, molecular and stochastic description of fluctuations and dissipations, and 
then we make use of Ito diffusions to obtain the models of statistical moments of relevant 
variables. While we do not cite the reference within this chapter -- as the works we refer to 
are well accepted knowledge in the disciplines such as thermodynamics, statistical 
mechanics and stochastic processes-- all the relevant works are given in the references list at 
the end of the book. However, we refer to Keizer’s work (1987) primarily in this chapter. 


