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1. Introduction    
Facial expressions are visible signs of a person’s affective state, cognitive activity and 
personality. Humans can perform expression recognition with a remarkable robustness 
without conscious effort even under a variety of adverse conditions such as partially 
occluded faces, different appearances and poor illumination. Over the last two decades, the 
advances in imaging technology and ever increasing computing power have opened up a 
possibility of automatic facial expression recognition and this has led to significant research 
efforts from the computer vision and pattern recognition communities. One reason for this 
growing interest is due to a wide spectrum of possible applications in diverse areas, such as 
more engaging human-computer interaction (HCI) systems, video conferencing, augmented 
reality. Additionally from the biometric perspective, automatic recognition of facial 
expressions has been investigated in the context of monitoring patients in the intensive care 
and neonatal units for signs of pain and anxiety, behavioural research, identifying level of 
concentration, and improving face recognition.  
Automatic facial expression recognition is a difficult task due to its inherent subjective 
nature, which is additionally hampered by usual difficulties encountered in pattern 
recognition and computer vision research. The vast majority of the current state-of-the-art 
facial expression recognition systems are based on 2-D facial images or videos, which offer 
good performance only for the data captured under controlled conditions. As a result, there 
is currently a shift towards the use of 3-D facial data to yield better recognition performance. 
However, it requires more expensive data acquisition systems and sophisticated processing 
algorithms. The aim of this chapter is to provide an overview of the existing methodologies 
and recent advances in the facial expression recognition, as well as present a systematic 
description of the authors’ work on the use of 3-D facial data for automatic recognition of 
facial expressions, starting from data acquisition and database creation to data processing 
algorithms and performance evaluation.  

1.1 Facial expression 
Facial expressions are generated ... skin texture” (Pantic & Rothkrantz, 2000)” should be 
replaced by “Expressions shown on the face are produced by a combination of contraction 
activities made by facial muscles, with most noticeable temporal deformation around nose, 
lips, eyelids, and eyebrows as well as facial skin texture patterns (Pantic & Rothkrantz, 
2000). Typical facial expressions last for a few seconds, normally between 250 milliseconds 
and five seconds (Fasel & Luettin, 2003). According to psychologists Ekman and Friesen 
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(Ekman & Friesen, 1971), there are six universal facial expressions, namely: anger, disgust, 
fear, happiness, sadness, and surprise, as shown in Figure 1. Among these universal 
expressions, some, such as happiness, can be accurately identified even if they are expressed 
by members of different ethnic groups. Others are more difficult to recognise even when 
expressed by the same person. 
 

                                  
                                      (a)                                      (b)                                     (c) 

                                                              
                                      (d)                                      (e)                                      (f) 

Fig. 1. Examples of six universal computer simulated expressions: (a) anger, (b) disgust, (c) 
fear, (d) happiness, (e) sadness, and (f) surprise (FaceGen, 2003). 

In computer vision and pattern recognition, facial expression recognition is often confused 
with human emotion recognition. While facial expression recognition uses purely visual 
information to group facial articulation into abstract classes, emotion recognition is based on 
many other physiological signals, such as voice, pose, gesture and gaze (Fasel & Luettin, 
2003). It is noteworthy to mention that emotions (or in general person’s mental state) are not 
the only cause of facial expressions. Facial expressions could also be manifestations of 
physiological activities and aid verbal and non-verbal communication. These, for example, 
may include physical symptoms of pain and tiredness, or listener responses during verbal 
communication. Therefore emotion recognition requires not only interpretation of facial 
expression but also understanding of the full contextual information.  

1.2 Applications 
Facial expression analysis can be traced back to the nineteenth century with Darwin’s theory 
on the similarity of facial expressions across different cultures and between different species 
(Darwin, 1872). From then on, most of research was conducted by psychologists until 1978 
with Suwa et al. (Suwa et al., 1978) presenting a preliminary investigation on automatic 
facial expression analysis from an image sequence. Currently automatic facial expression 
analysis and recognition have become an active research area associated with a wide range 
of applications, such as human-machine interaction, video conferencing, virtual reality, and 
biometrics. 
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Automatic recognition of facial expressions can act as a component of human-machine 
interface or perceptual interface (van Dam, 2000; Pentland, 2000). This kind of interface 
would be able to support the automated provision of services that require a good 
appreciation of the emotion from the user (Bartlett et al., 2003). For example, it could 
provide the user's intentions and feelings to a machine or robot to enable it to respond more 
appropriately during the service (Essa & Pentland, 1997). In the application of robot-assisted 
learning whereby a robot is used to teach the user by explaining the content of the lesson 
and question the user afterwards, understanding the human emotion will enable the robot 
to progress from one lesson to the next when the user is ready (Wimmer et al., 2008). 
Video conferencing, tele-presence and tele-teaching require transmission of a large amount 
of data, and data compression is often needed in order to reduce the storage and bandwidth 
requirements. Facial expression analysis offers an approach to achieve data compression for 
video conferencing (Pearson, 1995; Aizawa & Huang, 1995). Using the video frames 
recorded by the cameras in front of the people attending the video conference, facial 
expressions and motions of each person can be estimated at the transmitting side as a set of 
parameters that describe the current appearance of each person, thereby reducing the 
amount of data to be transmitted. At the other side of the video conference, the set of 
parameters received is used to render the facial model to present the approximate 
appearance of each person (Eisert & Girod, 1998). The technique of automatic facial 
expression analysis used in video conferencing can also be applied to virtual reality to 
provide realistic synthesis of facial articulation (Morishima & Harashima, 1993).  
In terms of biometrics, automatic expression recognition has been investigated in the context 
of monitoring patients in the intensive care and neonatal units (Brahnam et al., 2006) for 
signs of pain and anxiety, behavioural research on children's ability to learn emotions by 
interacting with adults in different social contexts (Pollak & Sinha, 2002), identifying level of 
concentration (Vural et al., 2007), for example detecting driver tiredness, and finally in 
aiding face recognition. 

1.3 Challenges 
Despite of the significant progress made in both research and application development, 
automatic facial expression recognition remains a particularly challenging problem (Wang 
& Yin, 2007; Bartlett et al., 2003). Broadly speaking, there are two major obstacles. One is 
related to a robust capture of facial expressions, and the other is associated with machine 
learning.  
With facial data being the information source for the facial expression recognition task, the 
processing complexity and expression recognition performance are strongly dependent on 
the data capture technique used. Although simple and low cost, current expression 
recognition systems based on 2-D imaging are only able to achieve good recognition 
performance in constrained environments due to difficulties in handling large variations in 
illumination and view angle (Quan, 2009a). These difficulties arise from the fact that the 
human face is a three-dimensional surface rather than a two-dimensional pattern, resulting 
in its 2-D projection being sensitive to changes in lighting and head pose (Pantic & 
Rothkrantz, 2000). This has led to the increased use of 3-D facial data capture systems, since 
it is largely immune to changes in pose and illumination (Yin et al., 2006; Quan, 2009a). 
However, it needs to be stressed that the 3-D face acquisition does not solve all the problems 
as for example it does not help to alleviate issues associated with occlusions, where typical 
examples of facial occlusions include subjects wearing glasses, or having long hair.  
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The machine learning challenges are related to facial feature extraction and classification to 
achieve a high performance of the facial expression recognition. The extracted features 
should represent different types of facial expressions in a way which is not significantly 
affected by age, gender, or ethnic origin of the subject. The classification method must be 
capable to define appropriate rules in order to derive a specific type of facial expression 
from the facial features provided, even when the output from the preceding processing 
stages, such as facial data acquisition and facial feature extraction, is noisy or incomplete 
(Wimmer et al., 2008). 

2. Facial expression recognition systems 
In general, a typical facial expression recognition system, whether automatic or semi-
automatic, consists of three main processing stages: acquisition, representation and 
classification. The general framework of a facial expression recognition system is illustrated 
in Figure 2 with each processing stage discussed in the following subsections. Facial data 
acquisition addresses how to detect, locate and acquire facial data in complex 2-D or 3-D 
scenes. Facial expression representation is concerned with the extraction of representative 
facial features for different types of expressions to give the required accuracy and 
robustness. Facial expression classification is tasked with finding a suitable classification 
algorithm to categorise facial expressions in terms of the facial features provided by the 
facial expression representation stage.   
 

 
Fig. 2. A general framework of facial expression recognition system 

2.1 Facial data acquisition 
Facial data can be acquired in 2-D or 3-D, both in a static or dynamic mode. A static 2-D 
facial image represents a scene at a fixed moment in time and as such does not contain 
information about temporal evolution of the scene; a dynamic 2-D facial data set is a time 
ordered collection of images and therefore can provide information about expression 
evolution which can aid recognition. For faces appeared in complex scenes with cluttered 
backgrounds, face detection algorithms are required to locate the facial area in each image 
(Heisele et al., 2001; Jones & Viola, 2003), since most of the face expression analysis methods 
need the exact position of the face in order to extract facial features of interest (Lanitis et al., 
1997; Hong et al., 1998; Steffens et al., 1998). Furthermore, the captured facial images usually 
need to be filtered so as to reduce the lighting variation as well as the specular reflection on 
eyes, teeth and skin (Black et al., 1998). Often for the subsequent feature extraction some 
assumptions need to be made about face appearance, these may include size, face 
orientation and intensity variations mentioned above. If the actual detected face does not 
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fulfil these restrictions, e.g. it is too small, it needs to be re-rendered. Such process is called 
face normalisation and is often applied after the face detection step and before the feature 
extraction stage (Flanelli et al., 2010). Interestingly some authors proposed to use 3-D cues 
for facial image normalisation even though the actual recognition process is based on 2-D 
information (Niese et al., 2007). 
A static 3-D facial data set is usually represented as a set of 3-D points or surface patches. 
Such data is normally captured by 3-D imaging systems (often called 3-D scanners). They 
scan a real-world object generating a geometric point cloud corresponding to samples taken 
from the observed 3-D surface. Apart from surface geometry, such 3-D scanners can often 
provide information about the corresponding 3-D point appearance e.g. colour.  In general, 
there are two major types of 3-D scanners, contact and non-contact (Curless, 2000). Contact 
3-D scanners, used mostly in manufacturing, are seldom used for facial expression analysis. 
Despite the fact that they provide accurate surface measurements, they require prohibitively 
long acquisition time. Non-contact scanners are much more suitable for 3-D facial data 
acquisition. They can be further divided into two broad categories of active and passive 
scanners. 
Active scanners measure object surface by emitting a light pattern and detecting its 
reflection (Zhang & Huang, 2006). Active scanners commonly found in applications of facial 
data analysis use structured or random patterns which are projected on the face surface. The 
surface reconstruction is based on detected geometrical distortions of the pattern. Such 
scanners often include one or more cameras and a projector.  
Passive 3-D scanners use the principles of multi-view geometry (Bernardini & Rushmeier, 
2002) utilising information from multiple cameras placed around the face surface without 
emitting any kind of radiation. The most popular type of passive scanners uses two cameras to 
obtain two different views of the face surface. By analysing the position differences between 
the corresponding surface points seen by each camera, the distance of face surface point can be 
determined through triangulation. A passive scanner from the Dimensional Imaging which 
has been used by the authors for the research on facial expression analysis is shown in Figure 
3. This 3-D scanner uses six digital cameras with three cameras on each side to capture six 
views of the face surface. Four of these images are used to reconstruct 3D facial geometry and 
the other two images provide the textural information for accurate 3D face rendering. 
 

 
Fig. 3. A passive 3-D scanner from Dimensional Imaging. 
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Similar to the dynamic 2-D data, a dynamic 3-D facial data set is a time ordered collection of 
3-D surfaces. This, among others, enables temporal tracking of facial points’ motion in the 3-
D space. The scanner shown in Figure 3 is capable of capturing dynamic data up to 60 
frames per second (fps).  Each second of the facial data with a resolution of 20,000 vertices 
captured at 60 fps requires around 10 Gigabytes of storage. This example illustrates one of 
the main disadvantages of 3-D dynamic scanners, namely: required availability of 
significant storage and computational resources. 

2.2 Facial expression representations 
Facial expression representation is essentially a feature extraction process, which converts 
the original facial data from a low-level 2-D pixel or 3-D vertex based representation, into a 
higher-level representation of the face in terms of its landmarks, spatial configuration, 
shape, appearance and/or motion. The extracted features  usually reduce the dimensionality 
of the original input facial data (Park & Park, 2004) (a noticeable example to the contrary 
would be Haar or Gabor features calculated as an input for the AdaBoost training algorithm, 
where dimensionality of the feature vector could be higher than the dimensionality of the 
original data). Presented in the following are a number of popular facial expression 
representations. 
A landmark based representation uses facial characteristic points, which are located around 
specific facial areas, such as edges of eyes, nose, eyebrows and mouth, since these areas 
show significant changes during facial articulation. Kobayashi and Hara (Kobayashi & Hara, 
1997) proposed a geometric face model based on 30 facial characteristic points for the frontal 
face view as shown in Figure 4(a). Subsequently, the point-based model was extended to 
include 10 extra facial characteristic points on the side view of the face (Pantic & 
Rothkranthz, 2000) as shown in Figure 4(b). These points on the side view are selected from 
the peaks and valleys of the profile contours. 
   

 
                                                   (a)                                            (b) 

Fig. 4. Point-based model: (a) 30 facial points selected from the frontal view, (b) 10 facial 
points selected from the side view. 

The localised geometric model could be classified as a representation based on spatial 
configuration derived from facial images (Saxena et al., 2004). The method utilises a facial 
feature extraction method, which is based on classical edge detectors combined with colour 
analysis in the HSV (hue, saturation, value) colour space to extract the contours of local 
facial features, such as eyebrows, lips and nose. As the colour of the pixels representing lips, 
eyes and eyebrows differ significantly from those representing skin, the contours of these 
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features can be easily extracted from the hue colour component. After facial feature 
extraction, a feature vector built from feature measurements, such as the brows distance, 
mouth height, mouth width etc., is created. 
Another representation based on spatial configuration is topographic context (TC) that has 
been used as a descriptor for facial expressions in 2-D images (Wang & Yin, 2007). This 
representation treats an intensity image as a 3-D terrain surface with the height of the terrain 
at pixel (x,y) represented by its image grey scale intensity I(x,y). Such image interpretation 
enables topographic analysis of the associated surface to be carried out leading to a 
topographic label, calculated based on a local surface shape, being assign to each pixel 
location. Resulting TC feature is an image of such labels assigned to all facial pixels of the 
original image. Topographic labels include: peak, ridge, saddle, hill, flat, ravine and pit. In 
total, there are 12 types of topographic labels (Trier et al., 1997). In addition, hill-labelled 
pixels can be divided into concave hill, convex hill, saddle hill (that can be further classified 
as a concave saddle hill or a convex saddle hill) and slope hill; and saddle-labelled pixels can 
be divided into ridge saddle or ravine saddle. For a facial image, the TC-based expression 
representation requires only six topographic labels shown in Figure 5 (Yin et al., 2004). 
 

          
                                  (a)                                      (b)                                    (c) 

          
                                  (d)                                      (e)                                     (f) 

Fig. 5. A subset of the topographic labels: (a) ridge, (b) convex hill, (c) convex saddle hill,  
(d) ravine, (e) concave hill, and (f) concave saddle hill. 

Similar to TC, the local binary patterns (LBP) have been also used to represent facial 
expressions in 2-D images (Liao et al., 2006). LBP as an operator was first proposed by Ojala 
et al. (Ojala et al., 2002) for texture description. An example of LBP calculation is illustrated 
in Figure 6. For a given pixel (shown in red in Figure 6), its value is subtracted from all the 
neighbouring pixels and the sign of the results is binary coded. After the clockwise grouping 
of the binary bits, starting from the top left pixel, the arranged binary string is converted to a 
decimal number as the final LBP result for that pixel. The LBP operator is an intensity 
invariant texture measure, which captures the directions of the intensity changes in an 
image. Using the LBP operator, each pixel of a facial image can be encoded by a LBP value 
which preserves the intensity difference with respect to its local neighbours. This encoded 
image can be used for the classification of facial expressions. Figure 7 shows a facial image 
and its corresponding LBP encoded image. The original LBP algorithm has also been 
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modified to encode the information of depth differences and applied to 3-D face 
representations (Huang et al., 2006). 
 

 
Fig. 6. An example of LBP calculation. 
 

   
                                                        (a)                                            (b)  

Fig. 7. A facial image and its LBP encoded image: (a) original, and (b) encoded. 

Among various shape based representations, the facial expression representation method 
based on the B-spline surface was proposed by Hoch (Hoch et al., 1994) for 3-D facial data. 
The B-spline surface is a parametric model which can efficiently represent 3-D faces using a 
small number of control points. Using B-splines in combination with the facial action coding 
system (FACS) (Ekman & Friesen, 1978), different facial expressions can be automatically 
created on the faces by moving the specific control points which correspond to the different 
action units of the FACS. The FACS is a human observer based system with the ability to 
detect subtle changes in facial features and it forms a widely accepted theoretical foundation 
for the control of facial animation (Hager et al., 2002). There are 46 action units defined by 
the FACS with each action unit representing a specific basic action performable on the 
human face. 
Another often used shape based representation is the statistical shape model (SSM) (Cootes 
et al., 1995). The SSM can be built based on facial points, landmarks or other parameters (e.g. 
B-spline coefficients) describing face shape. Given a set of training faces with know 
correspondences between them, the SSM finds a mean representation of these faces, e.g. 
mean configuration of the facial landmarks, and their main modes of variation (so called 
eigen-faces). With such SSM each new face can be approximately represented as a linear 
superposition of the mean face and the weighted eigen-faces. The weights, calculated 
through projection of the observed face on the subspace spanned by the eigen-faces, can be 
subsequently used as an approximate representation of the face. 
Using the SSM constructed, a 3-D face in the training data set is represented by a shape 
space vector (SSV) of much smaller dimensionality than the dimensionality of the original 
data space vector (Blake & Isard, 1998). To produce the SSV for an unseen new face, a 
modified iterative closest point (ICP) method is often incorporated with the least-squares 
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projection to register the SSM to the new face (Cootes & Taylor, 1996). For 3-D facial 
expression representation, it has been proved experimentally by the authors (Quan et al., 
2007a; Quan et al., 2007b) that the SSV is able to encode efficiently different facial 
expressions. 
A combination of shape and appearance based representations yields the active appearance 
model (AAM), which could be classified as another statistical model and has been used for 
facial expression representation (Hong et al., 2006; Edwards et al., 1998). It models the shape 
as well as grey levels textures and it is mainly used for 2-D facial images in facial expression 
representation applications. The model is built using a set of training facial images with 
corresponding landmarks selected manually and localised around the prominent facial 
features. In order to build the AAM, the selected landmarks representing the shape of each 
training face are aligned into a common coordinate system with each training facial image 
normalised to the same size. Subsequently, principal component analysis (PCA) is applied 
to the aligned landmarks and the normalised facial images to yield a vector of parameters 
which represents both the shape and grey level variations of the training facial images 
(Cootes et al., 1998). 
The 3-D morphable model is an extension of the AAM for 3-D data. Instead of using the 
manually selected landmarks, the 3-D morphable model uses all the data points of 3-D facial 
scans to represent the geometrical information (Blanz & Vetter, 2003). Optic flow is often 
used for establishing the dense correspondences of points between each training face and a 
reference face in texture coordinate space. This model has been used for representing the 
facial expressions which are embedded in the 3-D faces (Ramanathan et al., 2006). 
Finally, a motion based representation is the local parameterised model, which is calculated 
using the optical flow of image sequences (Black & Yacoob, 1997). Two parametric flow 
models are available for image motion, namely: affine and affine-plus-curvature. They not 
only model non-rigid facial motion, but also provide a description about the motion of facial 
features. Given the region of a face and locations of facial features of interest, such as eyes, 
eye brows and mouth, the motion of the face region between two frames in the image 
sequence is first estimated using the affine model. Subsequently the estimated motion is 
used to register the two images via warping, and the relative motions of the facial features 
are computed using the affine-plus-curvature model. Using the estimated motions, the 
region of the face and the locations of the facial features are predicted for the next frame, 
and the process is repeated for the whole image sequence. The parameters of estimated 
motions provide a description of the underlying facial motions and can be used to classify 
facial expressions. The region of the face and the locations of the facial features can be 
manually selected in the initial processing stage and automatically tracked thereafter. 

2.3 Facial expression classification 
In the context of facial expression analysis, classification is a process of assigning observed 
data to one of predefined facial expression categories. The specific design of this process is 
dependent on the type of the observation (e.g. static or dynamic), adopted data 
representation (type of the feature vector used to represent the data) and last but not the 
least the classification algorithm itself. As there is a great variety of classification algorithms 
reported in literature, this section will focus only on those, which are the most often used, or 
which have been recently proposed in the context of facial expression recognition. From that 
perspective, some of the most frequently used classification methods include nearest 
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neighbour classifiers, Fisher's linear discriminant (also know as linear discriminant 
analysis), support vector machines, artificial neural networks, AdaBoost, random forests, 
and hidden Markov models. 
Nearest neighbour classifier (NNC) is one of the simplest classification methods, which 
classifies objects based on closest training examples in the feature space. It can achieve 
consistently high performance without a prior assumption about the distribution from 
which the training data is drawn. Although there is no explicit training step in the 
algorithm, the classifier requires access to all training examples and the classification is 
computationally expensive when compared to other classification methods. The NNC 
assigns a class based on the smallest distances between the test data and the data in the 
training database, calculated in the feature space. A number of different distance measures 
have been used, including Euclidian and weighted Euclidian (Md. Sohail and Bhattacharya, 
2007), or more recently geodesic distance for features defined on a manifold (Yousefi et al., 
2010). 
Linear discriminant analysis (LDA) finds linear decision boundaries in the underlying 
feature space that best discriminate among classes, i.e., maximise the between-class scatter 
while minimise the within-class scatter (Fisher, 1936). A quadratic discriminant classifier 
(Bishop, 2006) uses quadratic decision boundary and can be seen, in the context of Bayesian 
formulation with normal conditional distributions, as a generalisation of a linear classifier in 
case when class conditional distributions have different covariance matrices.  
In recent years, one of the most widely used classification algorithms are support vector 
machines (SVM) which performs classification by constructing a set of hyperplanes that 
optimally separate the data into different categories (Huang et al., 2006). The selected 
hyperplanes maximise the margin between training samples from different classes. One of 
the most important advantages of the SVM classifiers is that they use sparse representation 
(only a small number of training examples need to be maintained for classification) and are 
inherently suitable for use with kernels enabling nonlinear decision boundary between 
classes. 
Other popular methods are the artificial neural networks. The key element of these methods 
is the structure of the information processing system, which is composed of a large number 
of highly interconnected processing elements working together to solve specific problems 
(Padgett et al., 1996). 
AdaBoost (Adaptive Boosting) is an example of so called boosting classifiers which combine 
a number of weak classifiers/learners to construct a strong classifier. Since its introduction 
(Freund and Schapire, 1997), AdaBoost is enjoying a growing popularity. A useful property 
of these algorithms is their ability to select an optimal set of features during training. As 
results AdaBoost is often used in combination with other classification techniques where the 
role of the AdaBoost algorithm is to select optimal features which are subsequently used for 
classification by another algorithm (e.g. SVM). In the context of facial expression recognition 
Littlewort (Littlewort et al., 2005) used the AdaBoost to select best Gabor features calculated 
for 2D video which have been subsequently used within SVM classifier. Similarly in (Ji and 
Idrissi, 2009) authors used a similar combination of AdaBoost for feature selection and SVM 
for classification with LBP calculated for 2D images. In (Whitehill et al., 2009) authors used a 
boosting algorithm (in that case GentleBoost) and the SVM classification algorithm with 
different features including Gabor filters, Haar features, edge orientation histograms, and 
LBP for detection of smile in 2D stills and videos. They demonstrated that when trained on 
real-life images it is possible to obtain human like smile recognition accuracy. Maalej (Maalej 
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et al., 2010) successfully demonstrated the use of Adaboost and SVM, utilising different 
kernels, with feature vector defined as geodesic distances between corresponding surface’s 
patches selected in the input 3D static data. 
More recently random forest (Breiman, 2001) classification techniques have gained 
significant popularity in the computer vision community. In (Flanelli et al., 2010) authors 
used random forest with trees constructed from a set of 3D patches randomly sampled from 
the normalised face in 2D video. The decision rule used in each tree node was based on the 
features calculated from a bank of log-Gabor filters and estimated optical flow vectors. 
Hidden Markov Models (HMM) are able to capture dependence in a sequential data and 
therefore are often the method of choice for classification of spatio-temporal data. As such 
they have been also used for classification of facial expressions from 2D (Cohen et al., 2003) 
and 3D (Sun & Yin, 2008) video sequences.  

3. Expression recognition from 3-D facial data 
As discussed in the previous section, automatic recognition of facial expressions can be 
achieved through various approaches by using different facial expression representation 
methods and feature classification algorithms. In this section, more details are given for one 
of the techniques previously proposed by the authors. The method uses the shape space 
vector (SSV) as the feature for facial expression representation, which is derived from the 
statistical shape model (SSM) and has shown promising results in facial expression 
recognition (Quan et al., 2009b). 

3.1 Statistical shape models 
The basic principle of the SSM is to exploit a redundancy in structural regularity of the given 
shapes, thereby enabling a shape to be described with fewer parameters, i.e., reducing the 
dimensionality of the shapes presented in the original spatial domain. In order to achieve 
this dimensionality reduction, the principal component analysis (PCA) is usually used. 
Given a set of M 3-D facial surfaces, { , [1, ]}i Mi ∈Q , where iQ  denotes a column vector 
representing the set of N corresponding vertices in the i-th face with 3NRi ∈Q , the first 
step of the PCA is to construct the mean vector, denoted by Q , and calculated from all the 
available data.  

 1

1

M
iM i

= ∑
−

Q Q  (1) 

Let C be defined as a 3 3N N×  covariance matrix calculated from the training data set. 

 1 ( )( )
1

M T
i iM i

= − −∑
−

C Q Q Q Q  (2) 

By building matrix X of “centred” shape vectors, with (Qi - Q ) as the i-th column of matrix 
X, covariance matrix C can be calculated as 

 T=C XX  (3) 
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Since the number of faces, M, in the training data set is usually much smaller than the 
number of data points on a face, the eigenvectors i′u   and eigenvalues  iλ′  of M M×  matrix 

TX X   are calculated first, and the corresponding eigenvectors iu  and eigenvalues iλ  of the 
TXX  are subsequently calculated from i i′ ′=u Xu Xu  and i iλ λ′=  (Vrtovec et al., 2004). 

By using these eigenvalues and eigenvectors, the data points on any 3-D face in the training 
data set can be approximately represented using a linear model of the form 

 l = +Q Wb Q  (4) 

where [ ]1 , , , ,i K=W u u u… …  is a 3N K×  so called Shape Matrix of K eigenvectors, or 
“modes of variation”, associated with the largest eigenvalues; and [ ]1 , , , , T

i Kb b b=b … …  is 
the shape space vector (SSV), which controls the contribution of each eigenvector, iu , in the 
approximated surface lQ  (Cootes et al., 1995). 
Projection of a facial surface denoted by Q on to the shape space using the shape matrix is 
then given by  

 ( )T= −b W Q Q  (5) 

Based on the SSM built using 450 randomly selected 3-D faces from the BU-3DFE database 
(see Section 4), Figure 8 shows variability of the first three elements of the SSV. The faces in 
each row have been obtained by adding to the mean face the corresponding eigenvector 
multiplied by a varying weight. 
 

 
Fig. 8. Facial articulations controlled by the first three elements of the SSV. 

In order to achieve the facial expression recognition using the extracted SSV, two processing 
stages are required, namely: model building and model fitting. The aim of the model 
building is to construct a 3-D SSM from a set of training data, whereas the model fitting is to 
estimate the SSV describing the new input 3-D faces so the SSM matches the new face.  
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3.2 Model building 
A fundamental problem when building an SSM lies in correct determination of point 
correspondences between 3-D faces in the training data set. This is critical, because incorrect 
correspondences can either introduce too much variations or lead to invalid cases of the 
model (Cootes et al., 1995). The dense point correspondence estimation can be achieved in 
three steps: (i) facial landmark determination, (ii) thin-plate spline warping, and (iii) closest 
points matching. The first step is to identify the sparse facial landmarks on the training faces 
and a selected reference face; the second step is to warp the reference face to each of the 
training faces using the thin-plate spline transformation; and the last step is to use the 
warped reference face to estimate dense point correspondences for each of the training faces. 

3.2.1 Facial landmark determination 
This step is to identify the sparse facial landmarks which are around areas sensitive to facial 
expressions. These landmarks can be either extracted automatically or selected manually. 
Although automated identification of facial landmarks could be fast, without requiring user 
input, it is likely to fail at some point and has low accuracy due to data uncertainties. On the 
other hand, manual selection of facial landmarks can be used to handle data uncertainties, 
but it is tedious, time-consuming and user dependent. 
A number of authors have proposed an automated identification method by using a template 
with annotated landmarks. Through registration of the template with a face, the landmarks 
pre-selected in the template can be propagated to the face (Frangi et al., 2002; Rueckert et al., 
2003). Optical flow is another technique that can be used to identify corresponding landmarks 
between 3-D facial surfaces through their 2-D texture matching (Blanz & Vetter, 1999).  
For the results presented later in this section the BU-3DFE database was used to construct 
the SSM. Each face in that database has 83 manually selected landmarks and these 
landmarks were used to establish a dense point correspondence. Figure 9 shows an example 
of faces in the BU-3DFE database with the selected facial landmarks. 
 

 
Fig. 9. BU-3DFE faces with selected facial landmarks (Yin et al., 2006). 

3.2.2 Thin-plate spline warping 
Using the sparse facial landmarks, the non-rigid transformations between the reference and 
training faces are estimated so that the reference face can be warped or deformed to match 
the shape of each training face. The thin-plate spline transformation model is used to 
achieve the non-rigid transformation (Bookstein, 1989), since the thin-plate spline is an 
effective tool for modeling deformations by combining global and local transformations and 
it has been applied successfully in several computer vision applications (Johnson & 
Christensen, 2002). In this step, the coefficients of the thin-plate spline transformation model 
are first computed using the sparse corresponding facial landmarks in two facial surfaces, 
and the transformation with the computed coefficients are applied to all the points of one 
facial surface so as to deform it to match to the other facial surface. 
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3.2.3 Closest point matching 
After thin-plate spline warping, the reference face is deformed to match each of the training 
faces. Since the pose and shape of the deformed reference face are very close to the 
associated training face, the correspondences of all points between them can be determined 
using the Euclidean distance metric (Besl & McKay, 1992).  
Let { , [1, ]}i Ni= ∈pP  be the point set of one of the training faces. The point ( )p̂ q on that 
training face estimated to be closest to any given point q  in the reference face is given by 

 ( ) ( )ˆ arg min ,d=
∈

p q p q
p P

 (6) 

where ( , )d p q  is the Euclidean distance between points p and q. When the correspondences 
between points on the reference face and each of the training faces are found, the whole 
training data set is aligned and brought into correspondence. With the aligned training data 
set, the SSM can be built directly using PCA as discussed in Section 3.1. Figure 10 shows 
examples on how the reference face is deformed to match five, randomly selected, training 
faces. These deformed reference faces are subsequently used to select points on the training 
faces which are in correspondence, across all the faces in the training database. It is seen that 
the shapes of deformed reference faces are close enough to the training faces to allow for 
selection of dense correspondences.  
  

 
(a) 

 
(b) 

 
(c) 

Fig. 10. Alignment of training images using thin-plate spline warping: (a) training faces, (b) 
reference faces after the thin-plate spline warping, and (c) training faces after re-selection of 
points which are in correspondence across all faces in the training database 

3.3 Model fitting 
The model fitting process is treated as 3-D surface registration, which consists of initial 
model fitting followed by refined model fitting. While the former provides a global 
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alignment, using similarity transformation, between the new input face and the SSM model 
constructed, the latter refines the alignment by iteratively deforming the SSM model to 
match the input face.  

3.3.1 Initial model fitting 
The initial model fitting stage is achieved by using the iterative closest point (ICP) method 
with similarity transformation (Besl & McKay, 1992), and is implemented in two steps.  
The first step is to roughly align the mean face, of the built SSM, and the input face based on 
their estimated centroids. This alignment does not have to be very accurate. An example of 
such alignment is shown in Figure 11(b), where the blue surface indicates the mean face of 
the SSM and the yellow surface represents the input face. 
 

 
                                                 (a)                               (b)                         (c) 

Fig. 11. An example of initial model fitting: (a) starting poses, (b) after rough alignment, and 
(c) after initial model fitting. 

In the second step this rough alignment is iteratively refined by alternately estimating point 
correspondences and finding the best similarity transformation that minimises a cost 
function between the corresponding points. In the specific implementation of the algorithm 
described here the cost function is defined as 

 1 2( )
1

N
E si iN i
= − +∑

−
q Rp t  (7) 

where N is the number of point correspondence pairs between the two surfaces, iq  and ip  
are respectively corresponding points on the model and new data surfaces, R is a 3x3 
rotation matrix, t is a 3x1 translation vector, and s is a scaling factor. For the given point 
correspondence the pose parameters minimising cost function E can be found in a closed 
form (see (Umeyama, 1991) for more details). 
The iterations in the second step could be terminated either when: (i) the alignment error 
between the two surfaces is below a fixed threshold, (ii) the change of the alignment error 
between the two surfaces in two successive iterations is below a fixed threshold, or (iii) the 
maximum number of iterations is reached. An option, which is often used, is to combine the 
second and third conditions.  
Furthermore, since the search of the dense point correspondences is one of the most time-
consuming tasks, a multi-resolution correspondence search has been developed to reduce 
the computation time. It starts searching for the point correspondences with a coarse point 
density, and gradually increases the point density in a series of finer resolutions as the 
registration error is reduced. To make this process more robust, random sampling is used to 
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sub-sample the original surface data to obtain a sequence of lower resolution data sets, with 
each sub-sampling reducing the number of the surface points by a quarter. At the beginning 
of the correspondence search, the lowest resolution data set is used, which allows for 
estimation of the large coarse motion of the model to match the input face. As the point 
density increases with the subsequent use of the finer data sets, it gradually restricts the 
amount of motion allowed and produces finer and finer alignment. Hence, the use of the 
multi-resolution correspondence search not only saves computation time, but also improves 
robustness of the alignment by avoiding local minima. Figure 11(c) shows an example result 
produced by the initial model fitting stage. 

3.3.2 Refined model fitting 
After the initial model fitting stage, the SSM and the input face are globally aligned. In the 
next stage, the SSM is iteratively deformed to better match the input face. This is achieved in 
the refined model fitting stage that consists of two main intertwined iterative steps, namely: 
shape and correspondence updates.  
Based on the correspondence established in the initial model fitting stage, the new face 
denoted here by vector ( )kP , with k representing the iteration index, and built by 
concatenating all surface vertices ( )k

ip  into a single vector, is projected onto the shape space 
to produce the first estimate of the SSV, ( )kb  and the first shape update, ( )ˆ kQ , as described 
in equations (8-9). 

 ( ) ( )( )k kT= −b W P Q  (8) 

 ( ) ( )ˆ k k= +Q Wb Q  (9) 

In the subsequent correspondence update stage, as described in equations (10-12), the data 

vertices, ( )k
ip , are matched against vertices ( )k

iq from the updated shape, ( )ˆ kQ . This includes 

similarity transformation of the data vertices to produce new vertices position ( )1k
i
+p� , and 

updating of the correspondence, represented by re-indexing of the data vertices, ( )
( )1k
j i
+p . 

 { }
{ }

( ) ( ) 2

, ,
ˆ ˆ ˆˆ,  ,   arg min     k k

i is i
s s

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
∑R T

R T q Rp T  (10) 

 ( ) ( )1 ˆ ˆˆk k
i is+ = +p Rp T�  (11) 

 ( )
( )
( )1 1k k

i j i
+ +→p p�  (12) 

This process iterates till either the change of the alignment error between the updated shape 
and the transformed data vertices is below a fixed threshold, or the maximum number of 
iterations is reached. The final result of the described procedure is the shape state vector 

( )Kb , where K denotes the last iteration, representing surface deformations between the 
model mean face and the input facial data. 
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From equation 8, it is seen that the size of the SSV is fixed which in turn determines the 
number of the eigenvectors from the shape matrix to be used. Although using a fixed size of 
the SSV can usually provide a reasonable final result of matching if a good initial alignment is 
achieved, it may mislead the minimisation of the cost function towards a local minimum in the 
refined model fitting stage. This can be explained by the fact that when a large size of the SSV 
is used, the SSM has a high degree of freedom enabling it to iteratively deform to a shape 
representing a local minimum, if it happens that the SSM was instantiated in the basing of this 
minimum. On the other hand, the SSM with a small size of the SSV has a low degree of 
freedom which constraints the deformation preventing it from converging to shapes 
associated with the local minima of the cost function, thereby limiting the ability of the SSM to 
accurately represent the data (Quan et al., 2010a). Figure 12 shows some examples of model 
matching failures caused by the size of the SSV being too large or too small. 
 

 
                                        (a)                      (b)                     (c)                       (d) 

Fig. 12. Failed examples of model refinement by using a fixed size of SSV: (a) model, (b) 
input face, (c) using large size of SSV, and (d) using small size of SSV. 
In order to solve the problem caused by the fixed size of SSV, the multi-level model 
deformation approach could be employed by using an adaptive size for the SSV. In the 
beginning of the refined model fitting stage, the SSV has a small size. Although it may results 
in a large registration error, it allows the algorithm to provide a rough approximation of the 
data. When the registration error is decreased, the size of SSV is gradually increased to provide 
more shape flexibility and allow the model to match the data. To implement this adaptive 
approach the fixed sized shape space matrix W  in equations (8-9) needs to be replaced with 

kW , where index k signifies that the size of the matrix (number of columns) is changing 
(increasing) with the iteration index. A reasonable setting for the adaptive SSV is to start with  
 

 
Fig. 13. Example of intermediate results obtained during iteration of refined model fitting 
with adaptive size of SSV. 
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an SSV size that enables the SSM to contain around 50% shape variance of the training data 
set (this corresponds to five eigenvectors in the case of 450 BU-3DFE training faces), to 
increase the SSV size by one in every two iterations during the refined model fitting stage, 
and to terminate the increase when the SSV size enables the SSM to contain over 95% shape 
variance. Some intermediate results taken from 21 iterations performed using the described 
procedure are shown in Figure 13. In that figure, the model and the input face used are the 
same as those shown in Figure 12. It can be seen that the multi-level model deformation 
approach not only provides a smooth transition between iterations during the model 
refinement stage but also enables the model to match the appropriate shape accordingly. 

4. Facial expression databases 
In order to evaluate and benchmark facial expression analysis algorithms, standardised data 
sets are needed to enable a meaningful comparison. Based on the type of facial data used by an 
algorithm, the facial expression databases can be categorised into 2-D image, 2-D video, 3-D 
static and 3-D dynamic. Since facial expressions have been studied for a long time using 2-D 
data, there is a large number of 2-D image and 2-D video databases available. Some of the 
most popular 2-D image databases include CMU-PIE database (Sim et al., 2002), Multi-PIE 
database (Gross et al., 2010), MMI database (Pantic et al., 2005), and JAFFE database (Lyons et 
al., 1999). The commonly used 2-D video databases are Cohn-Kanade AU-Coded database 
(Kanade et al., 2000), MPI database (Pilz et al., 2006), DaFEx database (Battocchi et al., 2005), 
and FG-NET database (Wallhoff, 2006). Due to the difficulties associated with both 2-D image 
and 2-D video based facial expression analysis in terms of handling large pose variation and 
subtle facial articulation, there is recently a shift towards the 3-D based facial expression 
analysis,  however this is currently supported by a rather limited number of 3-D facial 
expression databases. These databases include BU-3DFE (Yin et al., 2006), and ZJU-3DFED 
(Wang et al., 2006b). With the advances in 3-D imaging systems and computing technology, 3-
D dynamic facial expression databases are beginning to emerge as an extension of the 3-D 
static databases. Currently the only available databases with dynamic 3-D facial expressions 
are ADSIP database (Frowd et al., 2009), and BU-3DFE database (Yin et al., 2008).  

4.1 2-D image facial expression databases 
CMU-PIE initial database was created at the Carnegie Mellon University in 2000. The 
database contains 41,368 images of 68 people, and the facial images taken from each person 
cover 4 different expressions as well as 13 different poses and 43 different illumination 
conditions (Sim et al., 2002). Due to the shortcomings of the initial version of CMU-PIE 
database, such as a limited number of subjects and facial expressions captured, the Multi-
PIE database has been developed recently as an expansion of the CMU-PIE database (Gross 
et al., 2010). The Multi-PIE includes more than 750,000 images from 337 subjects, which were 
captured under 15 view points and 19 illumination conditions. MMI database includes 
hundreds of facial images and video recordings acquired from subjects of different age, 
gender and ethnic origin. This database is continuously updated with acted and 
spontaneous facial behaviour (Pantic et al., 2005), and scored according to the facial action 
coding system (FACS) (Ekman & Friesen, 1978). JAFFE database contains 213 images of 6 
universal facial expressions plus the neutral expression (Lyons et al., 1999). This database 
was created with a help of 10 Japanese female models. Examples of the six universal 
expressions from that database are shown in Figure 14. 



Facial Expression Recognition   

 

75 

 
                                      (a)                               (b)                                (c)   

 
                                     (d)                                (e)                                 (f) 

Fig. 14. Examples of the six universal facial expressions from the JAFFE database: (a) anger, 
(b) happiness, (c) sadness, (d) disgust, (e) fear, and (f) surprise. 

4.2 2-D video facial expression databases 
Cohn-Kanade AU Coded database is one of the most comprehensive 2-D video databases. 
Its initial release consisted of 486 video sequences from 97 subjects who were university 
students (Kanade et al., 2000). They ranged in age from 18 to 30 years old, with a variety of 
ethnic origins, including African-American, Asian and Hispanic. The peak expression for 
each sequence is coded according to the FACS (Ekman & Friesen, 1978). The second version 
of the database is an expansion of its initial release, which includes both posed and 
spontaneous facial expressions, with increased number of video sequences and subjects 
(Lucey et al., 2010). The third version of the database is planned to be published in 2011, and 
will contain, apart from the frontal view, additional synchronised recordings taken at 30 
degrees angle. MPI database was developed at the Max Planck Institute for Biological 
Cybernetics (Pilz et al., 2006). The database contains video sequences of four different 
expressions: anger, disgust, surprise and gratefulness. Each expression was record from five 
different views simultaneously as shown in Figure 15. DaFEx database includes 1,008 short 
videos containing 6 universal facial expressions and the neutral expression from 8 
 

 
             (a)                               (b)                          (c)                          (d)                       (e)    

Fig. 15. Examples of the MPI database showing five views: (a) left 45 degree, (b) left 22 
degree, (c) front, (d) right 22 degree, (e) right 45 degree. 
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professional actors (Battocchi et al., 2005). Each universal facial expression was performed at 
three intensity levels. FG-NET database has 399 video sequences which were gathered from 
18 individuals (Wallhoff, 2006). The emphasis in that database is put on recording a 
spontaneous behaviour of the subjects with emotions induced by showing participants 
suitable selected video clips. Similar to the DaFEx database, it covers 6 universal facial 
expressions plus the neutral expression. 

4.3 3-D static facial expression databases 
BU-3DFE database was developed at the Binghamton University for the purpose of 3-D 
facial expression analysis (Yin et al., 2006). The database contains 100 subjects, with ages 
ranging from 18 to 70 years old, with a variety of ethnic origins including White, Black, East-
Asian, Middle-East Asian, Indian and Hispanic. Each subject performed seven expressions, 
which include neutral and six universal facial expressions at four intensity levels. With 25 3-
D facial scans containing different expressions for each subject, there is a total of 2,500 facial 
scans in the database. Each 3-D facial scan in the BU-3DFE database contains 13,000 to 
21,000 polygons with 8,711 to 9,325 vertices. Figure 16 shows some examples from the BU-
3DFE database. 
 

 
Fig. 16. Examples from the BU-3DFE database (Yin et al., 2006). 

ZJU-3DFED database is a static 3-D facial expression database, which was developed in the 
Zhe Jiang University (Wang et al., 2006b). Compared to other 3-D facial expression 
databases, the size of ZJU-3DFED is relatively small. It contains 360 facial models from 40 
subjects. For each subject, there are 9 scans with four different kinds of expressions.  

4.4 3-D dynamic facial expression databases 
BU-4DFE database (Yin et al., 2008) is a 3-D dynamic facial expression database and an 
extension of the BU-3DFE database to enable the analysis of the facial articulation using 
dynamic 3-D data. The 3D facial expressions are captured at 25 frames per second (fps), and 
the database includes 606 3D facial expression sequences captured from 101 subjects. For 
each subject, there are six sequences corresponding to six universal facial expressions 
(anger, disgust, happiness, fear, sadness, and surprise). A few 3-D temporal samples from 
one of the BU-4DFE sequences are shown in Figure 17. 
ADSIP database is a 3-D dynamic facial expression database created at the University of 
Central Lancashire (Frowd et al., 2009). The first release of the database (ADSIPmark1) was 
completed in 2008 with help from 10 graduates from the School of Performing Arts. The use 
of actors, and trainee actors enables capture of fairly representative and accurate facial 
expressions (Nusseck et al., 2008). Each subject performed seven expressions: anger, disgust, 
happiness, fear, sadness, surprise and pain, at three intensity levels (mild, normal and 
extreme). Therefore, there is a total of 210 3D facial sequences in that database. Each 
sequence was captured at 24 fps and lasts for around three seconds. Additionally each 3D 
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Fig. 17. Temporal 3-D samples from one of the sequences in the BU-4DFE database (Yin et 
al., 2008). 

sequence is accompanied by a standard video recording captured in parallel with the 3D 
sequence. This database is unique in the sense that it has been independently validated as all 
the recordings in the database have been assessed by 10 independent observers. These 
observers assigned a score against each type of the expression for all the recordings. Each 
score represented how confident observers were about each sequence depicting each type of 
the expression. Results of this validation are summarised in the next section. Figure 18  
 

  
Fig. 18. Two examples from the ADSIPmark1 database showing happiness expression in 
normal intensity level (top two rows) and sadness expression in extreme intensity level 
(bottom two rows). 
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shows a couple of examples from the ADSIPmark1 database. That database is being gradually 
expanded. The new acquisitions are captured at 60 fps. Furthermore, some additional facial 
articulations with synchronised audio recording are captured, with each subject reading a 
number of predefined special phrases typically used for the assessment of neurological 
patients (Quan et al., 2010a; Quan et al., 2010b). The final objective of the ADSIP database is to 
contain 3-D dynamic facial data of over 100 control subjects and additional 100 subjects with 
different facial disfunctions. A couple of examples of this currently extended ADSIP database 
are shown in Figure 19. 
 

 
Fig. 19. Examples from the extended ADSIP database with anger expression in normal 
intensity level (top two rows with two different views) and fear expression in extreme 
intensity level (bottom two rows with two different views). 

4.5 Database validation 
Facial expressions are very subjective in nature. In other words, some of expressions are 
difficult to interpret and classify even for human observers who are normally considered as 
the “best classifier” for facial expressions. In order to validate the quality of a 3-D facial 
expression database, human observers have to be involved to see whether a particular facial 
expression, performed by a subject in response to a given instruction, is executed in a way 
which is consistent with the human perception of that expression. Use of human observers 
in validation of a facial database enables the assumed ground truth to be benchmarked, as it 
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provides a performance target for facial expression algorithms. It is expected that the 
performance of the best automatic facial expression recognition systems should be 
comparable with the human observers (Black & Yacoob, 1997; Wang & Yin, 2007).  
Using the video clips recorded simultaneously with dynamic 3-D facial scan, the first part of 
the ADSIP database was assessed by 10 invited observers. They were the staff and students 
at the University of Central Lancashire. A bespoke computer program was designed to 
present the recorded video clips and collect the confidence ratings given by each of the 
observers. Participants were shown one video clip at a time and were asked to enter their 
confidence ratings against seven categories for expressions: anger, disgust, fear, happiness, 
pain, sadness and surprise, with the confidence ratings selected from the range of 0 to 100% 
for each category. To reflect possible confusions from observers about an expression for a 
given video clip, ratings could be distributed over the various expression categories as long 
as scores added up to 100%. Table 1 presents the confidence scores for each expression 
averaged over all video clips scored by the all observes. It can be seen that happiness 
expressions were given near perfect confidence scores, and anger, pain and fear were the 
worst rated with fear scored below 50%. Also, the ‘normal’ intensity level was somewhat 
better rated than ‘mild’, and ‘extreme’ was also somewhat better than ‘normal’. Table 2 
shows the confidence confusion matrix for the seven expressions. It can be seen that the 
observers were again very confident about recognising the happiness expression whereas 
the fear expression was often confused with the surprise expression (Frowd et al., 2009). 
 

Intensity Anger
(%) 

Disgust 
(%) 

Fear 
(%) 

Happiness
(%) 

Sadness
(%) 

Surprise
(%) 

Pain 
(%) 

Mean 
(%) 

Mild 47.5 51.5 43.3 90.3 72.9 72.9 57.4 57.9 
Normal 56.6 78.3 41.5 94.3 75.6 75.6 62.0 65.7 
Extreme 61.4 80.7 48.4 96.0 74.0 74.0 75.7 70.3 
Mean (%) 55.2 70.2 44.4 93.5 74.2 74.2 65.0 64.6 

Table 1. Mean confidence scores for seven expressions. 
 

Input/Output Anger 
(%) 

Disgust 
(%) 

Fear 
(%) 

Happiness
(%) 

Sadness 
(%) 

Surprise 
(%) 

Pain 
(%) 

Anger 55.39 26.03 5.19 0.00 5.13 5.31 2.94 
Disgust 7.70 68.86 5.22 0.00 8.47 4.59 5.16 

Fear 3.80 9.02 46.90 0.00 7.13 23.90 9.26 
Happiness 0.27 0.98 0.71 92.95 1.15 2.35 1.59 

Sadness 4.07 5.87 3.63 0.71 74.15 3.22 8.33 
Surprise 0.60 7.54 21.84 1.04 2.46 64.64 1.88 

Pain 4.94 9.45 9.46 2.30 18.96 3.85 51.04 

Table 2. Confidence confusion matrix for the human observers. 

5. Evaluation of expression recognition using BU-3DFE database 
In order to characterise the performance of the SSV based representation for facial 
expression recognition, its effectiveness is demonstrated here in two ways. At first, the 
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distribution of the low-dimensional SSV-based features, extracted from the faces with 
various expressions is visualised, thereby showing the potential of the SSV-based features 
for facial expression analysis and recognition. Secondly, standard classification methods 
were used with the SSV-based features to quantify their discriminative characteristics. 

5.1 Visual illustration of expression separability 
Since it is difficult to visualise SSV-based features in a space with more than three 
dimensions, only the first three elements of the SSV are used to reveal its clustering 
characteristics and discriminative powers. An SSM was built using 450 BU-3DFE faces 
which were randomly selected from the database. The SSV-based features extracted from 
another 450 BU-3DFE faces which cover 18 individuals with six universal expressions were 
chosen for the visual illustration in 3-D shape space. It can be found that the SSV-based 
feature exhibits good expression separability even in a low-dimensional space, especially for 
those expression such as “anger vs. disgust”, “disgust vs. surprise” and “fear vs. 
happiness”. Examples of the expressions are given in Figure 20, where the SSV-based 
features representing these expressions are seen to form relatively well defined clusters in 
the low-dimensional shape space. Although some parts of the clusters slightly intersect with 
each other, the clusters can be identified easily. 

 
Fig. 20. Visualisation of expression separability in the low-dimensional SSV feature  space: 
(a) anger vs. disgust, (b) disgust vs. surprise, and (c) fear vs. happiness. 

5.2 Expression recognition 
To better evaluate the discriminative characteristics of the vectors in the shape space, 
quantitative results of facial expression recognition are shown in this section. Several 
standard classification methods were employed in the experiments. They are linear 
discriminant analysis (LDA), quadratic discriminant classifier (QDC), and nearest neighbour 
classifier (NNC) (Duda, 2001; Nabney, 2004). 900 faces from the BU-3DFE database were 
used for testing, which were divided into six subsets with each subset containing 150 
randomly selected faces. During the experiment, one of the subsets was selected as the test 
subset while the remaining subsets were used for learning. Such experiment was repeated 
six times, with the different subset selected as the test subset each time. Table 3 shows the 
averaged results for expression recognition achieved by the three classifiers. It can be seen 
that the LDA achieved the highest recognition rate of 81.89%.  
Table 4 shows the confusion matrix of the LDA classifier. It can be seen that the anger, 
happiness, sadness and surprise expressions are all classified with above 80% accuracy, 
whereas the fear expression is only classified correctly for around 73%. This is consistent 
with the validation results for the ADSIP database discussed in Section 4.5, which showed 
that the fear expression is often confused with other expressions by the human observers. 
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Classifiers LDA QDC NNC 
Recognition rate 81.89% 80.11% 78.53% 

Table 3. Average recognition rate of faces from BU-3DFE database using the SSV-based 
features. 
  

Input/Output Anger 
(%) 

Disgust 
(%) 

Fear 
(%) 

Happiness
(%) 

Sadness 
(%) 

Surprise 
(%) 

Anger 82.64 3.48 4.17 3.47 4.86 1.39 
Disgust 7.64 78.47 3.48 5.56 2.08 2.78 
Fear 4.27 3.57 72.59 12.50 5.66 1.39 
Happiness 2.78 5.56 8.33 83.33 0.00 0.00 
Sadness 4.17 3.47 11.11 0.00 81.25 0.00 
Surprise 0.00 0.00 4.17 2.78 0.00 93.06 

Table 4. Confusion matrix of the LDA classifier for BU-3DFE database. 

6. Evaluation of expression recognition using ADSIP database 
The performance evaluation using the ADSIP database is an extension of that based on the 
BU-3DFE database, which aims to check the stability of the proposed methodology with a 
statistical shape model built from one database and tested using a different database. 
Furthermore, it is also used to assess the performance of the proposed algorithm against 
human observers.  
As explained in Section 5.2, the statistical shape model was built based on 450 faces 
randomly selected from the BU-3DFE database. One hundred static 3-D faces were 
randomly chosen as the testing faces from the 210 dynamic 3-D facial sequences in the 
ADSIP database, with each one occurring approximately at the maximum of the expression. 
The selected test set contained 10 subjects with six different facial expressions at various 
intensities. For each testing face represented by its SSV, the three classifiers LDA, QDC and 
NNC, were used for the facial expression classification.  
Table 5 shows the average results obtained from expression recognition using the three 
classifiers. It can be seen that the LDA again achieved the highest recognition rate of 72.84%. 
Although this result is worse than the result obtained using the test faces from the BU-3DFE 
database, it is around 2.5% higher than the mean recognition rate achieved by the human 
observers for those ‘extreme’ expressions in the same ADSIP database shown in Table 1, and 
it is much better than the human observers’ mean recognition rates for the other two 
intensity levels of expressions.  
 

Classifiers LDA QDC NNC 
Recognition rate 72.84% 69.31% 70.54% 

Table 5. Average recognition rate of the SSV-based feature from ADSIP database. 

The confusion matrix of the LDA is shown in Table 6. It can be seen that the happiness is the 
most recognisable expression and followed by the surprise expression. Fear and sadness are 
the expressions which are often confused with others. 
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Input/Output Anger 
(%) 

Disgust 
(%) 

Fear 
(%) 

Happiness
(%) 

Sadness 
(%) 

Surprise 
(%) 

Anger 73.08 11.54 0.00 1.92 13.46 0.00 
Disgust 11.54 71.15 9.62 1.92 1.92 3.85 
Fear 1.92 11.54 55.77 17.31 13.46 0.00 
Happiness 2.08 0.00 10.83 87.08 0.00 0.00 
Sadness 22.92 0.00 10.42 0.00 66.67 0.00 
Surprise 0.00 6.25 8.33 0.00 2.08 83.33 

Table 6. Confusion matrix of the LDA classifier for ADSIP database. 

7. Discussion and conclusions 
This chapter has introduced concepts related to automatic facial expression recognition. 
Although these have included description of general issues relevant to such problem, the 
main emphasis has been on a review of the recent developments in the corresponding 
processing pipeline including: data acquisition, face normalisation, feature extraction and 
subsequent classification. The available facial expression databases were also introduced to 
provide complete information about available options for algorithm validation. To make 
these ideas clearer one of the algorithm, using shape space vector (SSV) calculated for 3D 
static facial data, was described in detail. The algorithm consists of model building and 
model fitting. In the model building stage, a statistical shape model (SSM) is constructed 
from a set of training data. In the model fitting stage, the built SSM is aligned and matched 
to the input faces through iterative estimation of pose and shape parameters, and such 
estimated shape parameters (embedded in the SSV) are used as a feature vector for facial 
expression recognition.  
In order to examine the facial expression recognition performance offered by the SSV 
representation method, two recently developed 3-D facial expression databases were used. 
The evaluation results based on the BU-3DFE database show that the SSV based 
representation method is capable of simulation and interpretation of 3-D human facial 
expressions. The test preformed with the ADSIP database indicates that the method can be 
used with data collected using different acquisition protocols. More significantly, the 
recognition rates for different facial expressions obtained using the SSV based 
representation are shown to be similar to those obtained using the human observers. 
The temporal information plays a vital role in the facial expression recognition. An analysis 
of a dynamic facial sequence instead of a single image is likely to improve the accuracy and 
robustness of the facial expression recognition systems (Sun & Yin, 2008). To reflect this new 
trend in facial data analysis the chapter includes short information about available 3D 
dynamic datasets. 
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