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Abstract. A numerical model using the 1D shallow water equations was developed for the 

simulation of long wave propagation and runup. The developed model is based on the Finite 

Volume Method (FVM) with an application of Godunov - type scheme of second order of accuracy. 

The model uses the HLL approximate Riemann solver for the determination of numerical fluxes at 

cell interfaces. The model was applied to the simulation of long wave propagation and runup on a 

plane beach and simulated results were compared with the published experimental data. The 

comparison shows that the present model has a power of simulation of long wave propagation and 

runup on beaches.  
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1. Introduction* 

Long wave runup on beaches is one of the 

hot challenging topics recently, for the ocean 

and coastal engineering researchers. 

Frequently, engineers face to problems 

related to the simulation or determination of 

wave runup in general, and long wave runup 

in particular for practical purposes, such as 

design of sea wall, coastal structures, etc. 

Therefore, development of a good model 

capable of simulation of wave runup is worth 

for practical usage as well as for indoor 

researches. 

Researchers have developed various 

analytical and numerical models based on the 

depth integrated shallow water equations to 

explain the physical processes. Notable 

analytical results include the one-dimensional 

_______ 
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solution of Carrier and Greenspan (1958) for 

periodic wave reflection from a plane beach 

[1] and the asymmetric solution by Thacker 

(1981) [6] for wave resonance in a circular 

parabolic basin. Synolakis (1987) [5]  

provided valuable experimental data of long 

wave runup on a plane beach, which then 

were well known among coastal engineering 

community, who do the job related with 

numerical modeling of coastal hydrodynamic 

processes. Analytical approach provides exact 

solution for idealized situation of geometry 

and offers insights into the physical 

processes. Numerical models provide 

approximate solutions in more general 

settings suitable for practical applications [9]. 

However, the main challenge lies in the 

treatment of the moving waterline and flow 

discontinuity when the water climbs up and 

down on beaches. 

So far, many researchers have developed 

models for the simulation of wave runup. 
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Shuto and Goto (1978) [4] used finite 

difference method with a staggered scheme 

and a Lagrangian description of the moving 

shoreline; Liu et al. (1995) modeled runup 

through flooding and drying of the cells in 

response to adjacent water level changes [3]. 

Titov and Synolakis (1995, 1998) [7, 8] 

proposed VTCS-2 model using the splitting 

technique and characteristic line method. Hu 

et al. (2000) [2] developed an 1D model using 

FVM with a Godunov-type upwind scheme 

to simulate the wave overtopping of seawall. 

Wei el al. (2006) presented a model for long 

wave runup using exact Riemann solver [9]. 

In this study, a numerical model is 

developed using FVM and the robust 

approximate Riemann solver HLL (Harten, 

Lax and van Leer) for the simulation of long 

wave runup on a beach. The model is verified 

for the case of experiment proposed by 

Synolakis (1987). Comparisons are carried out 

between simulated results and experimental 

data (Synolakis, 1987) [5]. The details of this 

study are given below. 

2. Numerical model 

2.1. Governing equation 

The present study considers One-

dimensional (1D) depth-integrated Shallow 

water equations in the Cartesian coordinate 

system ( ,x t ). The conservation form of the 

1D non-linear shallow water equations is 

written as 

t x

∂ ∂
+ =

∂ ∂
U F

S  (1) 

where U  is the vector of conserved variables; 

F is the flux vectors; and S is the source term. 

The explicit form of these vectors is explained 

as follows: 
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where g : gravitational acceleration; ρ : water 

density; h : still water depth; :H  total water 

depth, H h η= +  in which ( , )x tη  is the 

displacement of water surface from the still 

water level; xτ : bottom shear stress given by: 

x fC u uτ ρ= ,
2

1/ 3f

gn
C

H
=  (3) 

where n : Manning coefficient for the bed 

roughness. 

2.2. Numerical scheme 

The finite volume formulation imposes 

conservation laws in a control volume. 

Integration of Eq. (1) over a cell with the 

application of the Green’s theorem, gives: 

d d d
tΩ Γ Ω

∂
Ω + ⋅ Γ = Ω

∂∫ ∫ ∫
U

F n S  (4) 

where Ω : cell domain; Γ : boundary of Ω ; n : 

normal outward vector of the boundary. 

Taking the time integration of Eq. (4) over 

duration t∆  from 1t  to 2t , we have: 
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Considering the case of one-dimensional 

model with cell size of x∆ , from Eq. (5) we 

can deduce: 
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Note that the integral ( )
2
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is exactly the cell averaged value of U at time 

2t , divided by t∆ . The present model uses 

uniform cells with dimension x∆ , thus, the 

integrated governing equations (6) with a 

time step t∆  can be approximated with a half 

time step average for the interface fluxes and 

source term to become 
1

2
: 
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where i  is index at the cell center; k  denotes 

the current time step; the half indices 1/ 2i +  

and 1/ 2i −  indicate the cell interfaces; and 

1/ 2k +  denotes the average within a time 

step between k  and 1k + . Note that, in Eq. 

(7) the variables U  and source term S  are 

cell-averaged values (we use this meaning 

from now on). 

To solve the equation (7), we need to 

estimate the numerical fluxes 1/ 2
1/ 2

k
i
+
+F  and 1/ 2

1/ 2
k

i
+
−F  

at the interfaces. In this study, we use the 

Godunov-type scheme for this purpose. 

According to the Godunov-type scheme, the 

numerical fluxes at a cell interface could be 

obtained by solving a local Riemann problem 

at the interface. The Godunov scheme can be 

expressed as: 

 ( )1/ 2 1/ 2 1/ 2 / 0
,L R

i i i x t+ + + =
=F F U U  (8) 

where F ( ) represents the numerical flux at 

the cell interface obtained by solving a local 

Riemann problem using the data 1/ 2
L
i+U  and 

1/ 2
R
i+U  on each side of the cell interface. There 

are a number of approximate Riemann 

solvers proposed by different authors, such as 

Osher, Roe, etc. In this study, we use the HLL 

approximate Riemann solver. The formula for 

the solver is given as: 
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where *F  denotes the HLL approximate 

Riemann solver; Lu  and Ru  are respectively 

the depth averaged velocities of water flow at 

left and right side of the cell interface; LC  and 

RC  are the shallow water wave speeds at left 

and right side of the interface. 

In this study, we used three regions of 

wave speed to estimate the cell interface 

fluxes as follows: 
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To get a second order of accuracy for the 

numerical model,  1/ 2
L
i+U  and 1/ 2

R
i+U , Lu  and 

Ru , LC  and RC  are interpolated by using a 

linear reconstruction method based on the 

averaged values at cell centers with the usage 

of the TVD-type limiter, which is the average 

of Min-mode limiter and Roe limiter. For the 

wet and dry cell treatment, we use a 

minimum wet depth, the cell is assumed to be 

dry when its water depth less than the 

minimum wet depth (in this study we choose 

minimum wet depth of 10-5m). 

3. Simulation results and discussion 

3.1. Experimental condition 

A numerical experiment is carried out for 

the condition similar to the experiment done 
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by Synolakis (1987). In this experiment, there 

was a beach having a slope of 1:19.85 

connected to a horizontal bottom with water 

depth of h =1m. The toe of the beach located 

at distance 2 / 19.85x h =  and shoreline was at 

0x = . A solitary wave with the height of 

/ 0.3A h =  was generated at 1 / 24.42x h =  

coming to the beach from the part of constant 

water depth. The experiment provided with 

experimental data of water surface profile at 

different time. Fig. 1 shows the sketch of the 

experiment. 

 

Fig. 1. Sketch of Synolakis’s experiment. 

For the numerical simulation, the initial 

solitary wave is simulated by the solitary 

wave formula as: 

13

3
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η=                         (16) 

The computation domain is discretized 

into cells in a regular mesh with space step 

0.1mx∆ = and the simulation is carried out 

with the initial condition given by equations 

(15) and (16). Simulated results of water 

surface profile are recorded for comparing 

with the experimental data. 

3.2. Results and discussion 

Fig. 2 shows the initial free surface 

simulated by the numerical model. 
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Fig. 2. Initial free surface of the simulation. 
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Fig. 3. Comparison with experimental data: near 

breaking location. 
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Fig. 4. Comparison with experimental data: runup 

phase. 
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Fig. 5. Comparison with experimental data: rundown 

phase. 

Fig. 3 shows the comparison between 

simulated results and experimental data of 

free surface profile near the breaking location. 

It is seen that simulated results have some 

discrepancy at the wave crest compared to 

the experimental data. This could be due to 

the limitation of the shallow water equation 

itself in simulation of wave dispersion and 

breaking. After that, in side the surf zone, 

computed results agree very well with the 

experimental data, especially during the 

runup process on the beach (see Fig. 4 at 

normalized time 25, 35, 45). The highest 

runup attains at normalized time of 45 and 

the highest runup is of 0.5m. This result is 

about 1.6 times of the initial wave height. The 

agreement between simulated results and 

experimental data during the time of runup 

process could be explained as due to 

conservation of mass and momentum 

ensured in the present model using the 

conserved FVM.  

For the simulation of long wave runup on 

beaches, in practice, the most important thing 

is correctly simulated runup process and the 

highest climb up of water front. Although 

simulating the wave profile in the breaking 

zone is not well, the present model is still 

capable of simulation of wave runup process 

on the beach, specially the highest runup 

could be well simulated by the model. This is 

one of the practical purposes. 

At the stage of rundown (see Fig. 5 at the 

normalized time of 55), the water including 

the position of shoreline and inundation 

depth on the beach is still well simulated. 

Thus, the developed model with the FVM 

proposed in this study has a power of 

expansion to a two-dimensional model and is 

also capable of simulation of non-linear wave 

runup, rundown processes including the 

prediction of highest runup of water. 
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4. Conclusions 

A FVM based numerical model has been 

successfully developed for the simulation of 

long wave propagation and runup. This 

model specially well simulates the highest 

runup of water and inundation depth on the 

beach during runup and rundown processes. 

The good agreement between the 

simulated results and experimental data 

reveals that the model has a potential for 

practical uses and should be studied further 

in order to expand to a two-dimensional 

model for various purposes in practice, such 

as simulation of Tsunami runup and 

inundation on coastal areas, flooding due to 

storm surge, etc. 

Acknowledgements  

This paper was completed partly under 

financial support of Fundamental Research 

Project 304006 funded by Vietnam Ministry of 

Science and Technology.  

 

References 

[1] G.E. Carrier, H.P. Greenspan, Water waves of 

finite amplitude on a sloping beach, Journal of 

Fluid Mechanics 4 (1958) 97. 

[2] K. Hu , C.G. Mingham, D.M. Causon, Numerical 

simulation of wave overtopping of coastal 

structures using the non-linear shallow water 

equations, Coastal Engineering, Elsevier 41 (2000) 

433. 

[3] P.L-F Liu et al., Runup of solitary wave on a 

circular island, Journal of Fluid Mechanics 302 

(1995) 259. 

[4] N. Shuto, C. Goto, Numerical simulation of 

tsunami runup, Coastal Engineering Journal, Japan 

21 (1978) 13. 

[5] C.E. Synolakis, The runup of solitary waves. 

Journal of Fluid Mechanics 185 (1987) 523. 

[6] W.C. Thacker, Some exact solutions to nonlinear 

shallow-water equations, Journal of Fluid 

Mecanics 107 (1981) 499. 

[7] V.V. Titov, C.E. Synolakis, Modeling of breaking 

and non-breaking long wave evolution and 

runup using VTCS-2, Journal of Waterway, Port, 

Coastal and Ocean Engineering 121 (1995) 308. 

[8] V.V. Titov, C.E. Synolakis, Numerical modeling 

of tidal wave runup, Journal of Waterway, Port, 

Coastal and Ocean Engineering 124 (1998) 157. 

[9] Y. Wei, X.Z. Mao, K.F. Cheung, Well-balanced 

Finite Volume Model for Long wave runup, 

Journal of Waterway, Port, Coastal and Ocean 

Engineering 132 (2006) 114. 

 

 


