Computer Architecture A Quantitative Approach Fourth Edition # John L. Hennessy Stanford University # David A. Patterson University of California at Berkeley ĐẠI HỌC QUỐC GIA HÀ NỘI TRUNG TÂM THÔNG TIN THƯ VIỆN With Contributions by # Andrea C. Arpaci-Dusseau University of Wisconsin-Madison # Remzi H. Arpaci-Dusseau University of Wisconsin-Madison #### Krste Asanovic Massachusetts Institute of Technology # Robert P. Colwell R&F Colwell & Associates, Inc. # Thomas M. Conte North Carolina State University ### José Duato Universitat Politècnica de València and Simula #### Diana Franklin California Polytechnic State University, San Luis Obispo # David Goldberg Xerox Palo Alto Research Center # Wen-mei W. Hwu University of Illinois at Urbana-Champaign # Norman P. Jouppi HP Labs # Timothy M. Pinkston University of Southern California # John W. Sias University of Illinois at Urbana-Champaign # David A. Wood University of Wisconsin-Madison # **Contents** | | Foreword | ix | |-----------|---|---| | | Preface | xv | | | Acknowledgments | xxiii | | Chapter 1 | Fundamentals of Computer Design | | | | 1.1 Introduction 1.2 Classes of Computers 1.3 Defining Computer Architecture 1.4 Trends in Technology 1.5 Trends in Power in Integrated Circuits 1.6 Trends in Cost 1.7 Dependability 1.8 Measuring, Reporting, and Summarizing Performance 1.9 Quantitative Principles of Computer Design 1.10 Putting It All Together: Performance and Price-Performance 1.11 Fallacies and Pitfalls 1.12 Concluding Remarks 1.13 Historical Perspectives and References Case Studies with Exercises by Diana Franklin | 22
8
14
17
19
25
28
37
44
48
52
54 | | Chapter 2 | Instruction-Level Parallelism and Its Exploitation | | | | 2.1 Instruction-Level Parallelism: Concepts and Challenges 2.2 Basic Compiler Techniques for Exposing ILP 2.3 Reducing Branch Costs with Prediction 2.4 Overcoming Data Hazards with Dynamic Scheduling 2.5 Dynamic Scheduling: Examples and the Algorithm 2.6 Hardware-Based Speculation 2.7 Exploiting ILP Using Multiple Issue and Static Scheduling | 66
74
80
89
97
104 | | | 2.11
2.12 | Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and Speculation Advanced Techniques for Instruction Delivery and Speculation Putting It All Together: The Intel Pentium 4 Fallacies and Pitfalls Concluding Remarks Historical Perspective and References Case Studies with Exercises by Robert P. Colwell | 118
121
131
138
140
141
142 | |-----------|---|--|--| | Chapter 3 | Limi | its on Instruction-Level Parallelism | | | | 3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9 | Introduction Studies of the Limitations of ILP Limitations on ILP for Realizable Processors Crosscutting Issues: Hardware versus Software Speculation Multithreading: Using ILP Support to Exploit Thread-Level Parallelism Putting It All Together: Performance and Efficiency in Advanced Multiple-Issue Processors Fallacies and Pitfalls Concluding Remarks Historical Perspective and References Case Study with Exercises by Wen-mei W. Hwu and John W. Sias | 154
154
165
170
172
179
183
184
185 | | Chapter 4 | Mul | tiprocessors and Thread-Level Parallelism | | | | | Introduction Symmetric Shared-Memory Architectures Performance of Symmetric Shared-Memory Multiprocessors Distributed Shared Memory and Directory-Based Coherence Synchronization: The Basics Models of Memory Consistency: An Introduction Crosscutting Issues Putting It All Together: The Sun T1 Multiprocessor Fallacies and Pitfalls Concluding Remarks Historical Perspective and References Case Studies with Exercises by David A. Wood | 196
205
218
230
237
243
246
249
257
262
264
264 | | Chapter 5 | Men | nory Hierarchy Design | | | | 5.1
5.2
5.3 | Introduction Eleven Advanced Optimizations of Cache Performance Memory Technology and Optimizations | 288
293
310 | | | | | Contents | 55 | xiii | |-----------|------|---|----------|----|------| | | 5.4 | Protection: Virtual Memory and Virtual Machines | | | 315 | | | 5.5 | Crosscutting Issues: The Design of Memory Hierarchies | | | 324 | | | 5.6 | Putting It All Together: AMD Opteron Memory Hierarchy | | | 326 | | | 5.7 | Fallacies and Pitfalls | | | 335 | | | 5.8 | Concluding Remarks | | | 341 | | | 5.9 | Historical Perspective and References | | | 342 | | | | Case Studies with Exercises by Norman P. Jouppi | | | 342 | | Chapter 6 | Stor | rage Systems | | | | | | 6.1 | Introduction | | | 358 | | | 6.2 | Advanced Topics in Disk Storage | | | 358 | | | 6.3 | Definition and Examples of Real Faults and Failures | | | 366 | | | 6.4 | I/O Performance, Reliability Measures, and Benchmarks | | | 371 | | | 6.5 | A Little Queuing Theory | | | 379 | | | 6.6 | Crosscutting Issues | | | 390 | | | 6.7 | Designing and Evaluating an I/O System—The Internet | | | | | | | Archive Cluster | | | 392 | | | 6.8 | Putting It All Together: NetApp FAS6000 Filer | | | 397 | | | 6.9 | Fallacies and Pitfalls | | | 399 | | | 6.10 | Concluding Remarks | | | 403 | | | 6.11 | Historical Perspective and References | | | 404 | | | | Case Studies with Exercises by Andrea C. Arpaci-Dusseau | ı and | | | | | | Remzi H. Arpaci-Dusseau | | | 404 | | | | | | | | | Appendix A | A Pipelining: Basic and Intermediate Concepts | | | | | |------------|---|---|--|-----|--| | | A.1 | Introduction | | A- | | | | A.2 | The Major Hurdle of Pipelining—Pipeline Hazards | | A-1 | | | | A.3 | How Is Pipelining Implemented? | | A-2 | | | | | | | | | | | | , , , | |-----|---|-------| | 4.5 | Extending the MIPS Pipeline to Handle Multicycle Operations | A-47 | | 4.6 | Putting It All Together: The MIPS R4000 Pipeline | A-56 | | 4 7 | Crosscutting Issues | A-65 | | A.8 | Fallacies and Pitfalls | A-75 | |------------|---------------------------------------|------| | A.9 | Concluding Remarks | A-76 | | A.10 | Historical Perspective and References | A-77 | | rinciples and Examples | |------------------------| | • | | A.10 | Historical Perspective and References | A-77 | |------------|--|------------| | Inst | ruction Set Principles and Examples | | | B.1 | Introduction Classifying Instruction Set Architectures | B-2
B-3 | | B.2
B.3 | Memory Addressing | B-3 | | B.4 | Type and Size of Operands | B-13 | | B.5 | Operations in the Instruction Set | B-14 | # xiv Contents | | B.6 Instructions for Control Flow B.7 Encoding an Instruction Set B.8 Crosscutting Issues: The Role of Compilers B.9 Putting It All Together: The MIPS Architecture B.10 Fallacies and Pitfalls B.11 Concluding Remarks B.12 Historical Perspective and References | B-16
B-21
B-24
B-32
B-39
B-45
B-47 | |------------|--|--| | Appendix C | Review of Memory Hierarchy | | | | C.1 Introduction C.2 Cache Performance C.3 Six Basic Cache Optimizations C.4 Virtual Memory C.5 Protection and Examples of Virtual Memory C.6 Fallacies and Pitfalls C.7 Concluding Remarks C.8 Historical Perspective and References | C-2
C-15
C-22
C-38
C-47
C-56
C-57 | | | Companion CD Appendices | | | Appendix D | Embedded Systems Updated by Thomas M. Conte | | | Appendix E | Interconnection Networks Revised by Timothy M. Pinkston and José Duato | | | Appendix F | Vector Processors Revised by Krste Asanovic | | | Appendix G | Hardware and Software for VLIW and EPIC | | | Appendix H | Large-Scale Multiprocessors and Scientific Applications | | | Appendix I | Computer Arithmetic by David Goldberg | | | Appendix J | Survey of Instruction Set Architectures | | | Appendix K | Historical Perspectives and References | | | | Online Appendix (textbooks.elsevier.com/0123704901) | | | Appendix L | Solutions to Case Study Exercises | | | | References | R-1 | | | Index | I-1 |