evolution

SECOND EDITION

DOUGLAS J. FUTUYMA

Stony Brook University

Chapter 20, "Evolution of Genes and Genomes" by Scott V. Edwards, Harvard University

Chapter 21, "Evolution and Development" by John R. True, Stony Brook University

Contents

CHAPTER 1

Evolutionary Biology 1

What Is Evolution? 2
Before Darwin 4
Charles Darwin 6
Darwin's Evolutionary Theory 7
Evolutionary Theories after Darwin 8
The Evolutionary Synthesis 9

Fundamental principles of evolution 9

Evolutionary Biology since the Synthesis 11

Philosophical Issues 12

Ethics, Religion, and Evolution 13

Evolution as Fact and Theory 13

CHAPTER 2

The Tree of Life: Classification and Phylogeny 17

Classification 19 Inferring Phylogenetic History 22

Similarity and common ancestry 22 Complications in inferring phylogeny 25 The method of maximum parsimony 27 An example of phylogenetic analysis 29

Evaluating phylogenetic hypotheses 31

Molecular Clocks 33 Gene Trees 35 Difficulties in Phylogenetic Analysis 37 Hybridization and Horizontal Gene Transfer 42

CHAPTER 3

Patterns of Evolution 45

Evolutionary History and Classification 47
Inferring the History of Character Evolution 48
Some Patterns of Evolutionary Change Inferred from Systematics 50

Most features of organisms have been modified from pre-existing features 50

Homoplasy is common 53

Rates of character evolution differ 56

Evolution is often gradual 57

Change in form is often correlated with change in function 58

Similarity among species changes throughout ontogeny 58 Development underlies some common patterns of morphological evolution 59

Phylogenetic Analysis Documents Evolutionary Trends 63

Many Clades Display Adaptive Radiation 64
Patterns in Genes and Genomes 66

Genome size 66
Duplicated genes and genomes 67

CHAPTER 4

Evolution in the Fossil Record 73

Some Geological Fundamentals 73

Plate tectonics 74 Geological time 74

The geological time scale 75

The Fossil Record 77

Evolutionary changes within species 77 Origins of higher taxa 79

The Hominin Fossil Record 88
Phylogeny and the Fossil Record 91
Evolutionary Trends 92
Punctuated Equilibria 93
Rates of Evolution 96

CHAPTER 5

A History of Life on Earth 101

Before Life Began 102

The Emergence of Life 102

Precambrian Life 104

Paleozoic Life: The Cambrian Explosion 108
Paleozoic Life: Ordovician to Devonian 111

Marine life 111 Terrestrial life 112

Paleozoic Life: Carboniferous and Permian 114

Terrestrial life 114 Aquatic life 115

Mesozoic Life 115

Marine life 115

Terrestrial plants and arthropods 116

Vertebrates 119

The Cenozoic Era 121

Aquatic life 122 Terrestrial life 123

The adaptive radiation of mammals 123

Pleistocene events 126

CHAPTER 6

The Geography of Evolution 133

Biogeographic Evidence for Evolution 134

Major Patterns of Distribution 135

Historical Factors Affecting Geographic Distributions 137

Testing Hypotheses in Historical Biogeography 140

Examples of historical biogeographic analyses 141

The composition of regional biotas 145

Phylogeography 146

Pleistocene population shifts 146 Modern human origins 147

Geographic Range Limits: Ecology and Evolution 150

Range limits: An evolutionary problem 152

Evolution of Geographic Patterns of Diversity 153

Community convergence 153

Effects of History on Contemporary Diversity Patterns 155

CHAPTER 7

The Evolution of Biodiversity 161

Estimating and Modeling Biological Diversity 162

Estimates of diversity 162

Taxonomic Diversity through the Phanerozoic 163

Rates of origination and extinction 164

Extinction rates have declined over time 165

Do extinction rates change as clades age? 168

Causes of extinction 168

Mass extinctions 169

Diversification 171

Modeling rates of change in diversity 171

Does species diversity reach equilibrium? 174

CHAPTER 8

The Origin of Genetic Variation 187

Genes and Genomes 188 Gene Mutations 190

Kinds of mutations 191

Examples of mutations 195

Rates of mutation 196

Phenotypic effects of mutations 200

Effects of mutations on fitness 202

The limits of mutation 205

Mutation as a Random Process 206
Alterations of the Karyotype 207

Polyploidy 207

Chromosome rearrangements 208

CHAPTER 9

Variation 215

Sources of Phenotypic Variation 217

Fundamental Principles of Genetic Variation in Populations 220

Frequencies of alleles and genotypes: The Hardy-Weinberg principle 221

An example: The human MN locus 223

The significance of the Hardy-Weinberg principle: Factors in evolution 224

Frequencies of alleles, genotypes, and phenotypes 225 Inbreeding 225

Genetic Variation in Natural Populations: Individual Genes 227

Morphology and viability 227 Inbreeding depression 229

Genetic variation at the molecular level 229

Genetic Variation in Natural Populations: Multiple Loci 232

Variation in quantitative traits 236

Variation among Populations 241

Patterns of geographic variation 241

Gene flow 244

Allele frequency differences among populations 246 Human genetic variation 248

CHAPTER 10

Genetic Drift: Evolution at Random 255

The Theory of Genetic Drift 256

Genetic drift as sampling error 256

Coalescence 257

Random fluctuations in allele frequencies 259

Evolution by Genetic Drift 260

Effective population size 261

Founder effects 263

Genetic drift in real populations 263

The Neutral Theory of Molecular Evolution 266

Principles of the neutral theory 267

Variation within and among species 269

Support for the neutral theory 270

Gene Flow and Genetic Drift 272

Gene trees and population history 272

The origin of modern Homo sapiens revisited 274

CHAPTER 11

Natural Selection and Adaptation 279

Adaptations in Action: Some Examples 280

The Nature of Natural Selection 282

Design and mechanism 282

Definitions of natural selection 283

Natural selection and chance 284

Selection of and selection for 284

Examples of Natural Selection 285

Bacterial populations 285

Inversion polymorphism in Drosophila 286

Male reproductive success 287

Population size in flour beetles 288

Kin discrimination in cannibalistic salamanders 289

Selfish genetic elements 290

Levels of Selection 290

Selection of organisms and groups 291 Species selection 293

The Nature of Adaptations 294

Definitions of adaptation 294

Recognizing adaptations 294

What Not to Expect of Natural Selection and Adaptation 298

The necessity of adaptation 298

Perfection 299

Progress 299

Harmony and the balance of nature 299

Morality and ethics 300

CHAPTER 12

The Genetical Theory of Natural Selection 303

Fitness 304

Modes of selection 304

Defining fitness 305

Components of fitness 306

Models of Selection 308

Directional selection 308

Deleterious alleles in natural populations 312

Polymorphism Maintained by Balancing Selection 315

Heterozygote advantage 315

Antagonistic and varying selection 317

Frequency-dependent selection 318

Multiple Outcomes of Evolutionary Change 321

Positive frequency-dependent selection 321

Heterozygote disadvantage 321

Adaptive landscapes 322

Interaction of selection and genetic drift 322

The Strength of Natural Selection 324

Molecular Signatures of Natural Selection 325

Theoretical expectations 325

Signatures of selection 329

Adaptive evolution across the genome 332

CHAPTER 13

Phenotypic Evolution 337

Genetic Architecture of Phenotypic Traits 338 Components of Phenotypic Variation 340

Genetic variance in natural populations 343

Genetic Drift or Natural Selection? 343

Natural Selection on Quantitative Traits 345

Response to directional selection 345

Responses to artificial selection 345

Directional selection in natural populations 347

Stabilizing and disruptive selection 348

Evolution observed 348

What Maintains Genetic Variation in Quantitative Characters? 350

Correlated Evolution of Quantitative Traits 352

Correlated selection 352

Genetic correlation 352

How genetic correlation affects evolution 354

Can Genetics Predict Long-Term Evolution? 355 Norms of Reaction 357

Canalization 357

Phenotypic plasticity 358

Evolution of variability 360

Genetic Constraints on Evolution 362

CHAPTER 14

The Evolution of Life Histories 369

Individual Selection and Group Selection 371 Modeling Optimal Phenotypes 372

Life History Traits as Components of Fitness 373

Female fecundity, semelparity, and iteroparity 374 Age structure and reproductive success 376

Trade-Offs 377

The Evolution of Life History Traits 379

Life span and senescence 379

Age schedules of reproduction 380

Number and size of offspring 381

The Evolution of the Rate of Increase 383

CHAPTER 15

Sex and Reproductive Success 387

The Evolution of Mutation Rates 388 Sexual and Asexual Reproduction 388 The Paradox of Sex 389

Parthenogenesis versus the cost of sex 389 Hypotheses for the advantage of sex and

recombination 391

Sex Ratios and Sex Allocation 393

Inbreeding and Outcrossing 395

The Concept of Sexual Selection 397

Contests between Males and between Sperm 398

Sexual Selection by Mate Choice 400

Direct benefits of mate choice 400

Indirect benefits of mate choice 402

Sensory bias 405

Antagonistic coevolution 406

Alternative Mating Strategies 408

CHAPTER 16

Conflict and Cooperation 413

Conflict 414

Social Interactions and Cooperation 417

Cooperation based on direct benefits 417

Reciprocity: Cooperation based on repeated interactions 418

The evolution of altruism by shared genes 420

A Genetic Battleground: The Family 424

Mating systems and parental care 424

Infanticide, abortion, and siblicide 426

Parent-offspring conflict 427

Cooperative breeding 427

Social insects 428

Genetic Conflict 431

Parasitism, Mutualism, and Levels of Organization 433 Human Behavior and Human Societies 435

Variation in sexual orientation 435

The question of human nature 437

Cultural evolution and gene-culture coevolution 438

CHAPTER 17

Species 445

What Are Species? 446

Phylogenetic species concepts 447

The biological species concept 447

Domain and application of the biological species concept 448

Taxonomic versus biological species 450

When species concepts conflict 451

Barriers to Gene Flow 451

Premating barriers 451

Postmating, prezygotic barriers 453

Postzygotic barriers 455

How Species Are Diagnosed 456

Differences among Species 456

The Genetic Basis of Reproductive Barriers 458

Genes affecting reproductive isolation 458

Functions of genes that cause reproductive isolation 461

Chromosome differences and postzygotic isolation 461

The significance of genetic studies of reproductive isolation 462

Molecular Divergence among Species 463 Hybridization 464

Primary and secondary hybrid zones 464

Genetic dynamics in a hybrid zone 465

The fate of hybrid zones 467

CHAPTER 18

Speciation 471

Modes of Speciation 472

Allopatric Speciation 473

Evidence for allopatric speciation 473

Mechanisms of vicariant allopatric speciation 476

Ecological selection and speciation 477

Sexual selection and speciation 480

Reinforcement of reproductive isolation 481

Peripatric speciation 484

Alternatives to Allopatric Speciation 486

Parapatric speciation 486

Sympatric speciation 487

Polyploidy and Recombinational Speciation 490

Polyploidy 490

Recombinational speciation 492

How Fast Is Speciation? 493 Consequences of Speciation 495

CHAPTER 19

Coevolution: Evolving Interactions among Species 499

The Nature of Coevolution 500 Phylogenetic Aspects of Species Associations 501 Coevolution of Enemies and Victims 503

Models of enemy-victim coevolution 504

Examples of predator-prey coevolution 506

Plants and herbivores 507

Infectious disease and the evolution of parasite virulence 510

Mutualisms 513

The Evolution of Competitive Interactions 516

Multispecies interactions and community structure 518

CHAPTER 20

Evolution of Genes and Genomes 523

New Molecules and Processes in Genomes 525 Genome Diversity and Evolution 525

Diversity of genome structure 525

Viral and microbial genomes—the smallest genomes 527

Repetitive sequences and transposable elements 529

New genomes reveal major events in the history of life 531

Protein Evolution and Translational Robustness 532

Codon bias 532

Gene expression and selection on translation errors 533

Natural Selection across the Genome 534

Adaptive molecular evolution in primates 535

Molecular evolution in the human lineage 536

Scaling up: From gene to genome 536

Origin of New Genes 537

Lateral gene transfer 537

Origin of new genes from noncoding regions 537

Exon shuffling 538

Gene chimerism 540

Motif multiplication and exon loss 541

The Evolution of Multigene Families 542

Gene duplication 542

Multigene families and the origin of key innovations 543

Gene and Genome Duplication 545

Duplication of whole genomes and chromosomal segments 545

Possible fates of duplicate genes 546

Selective fates of recently duplicated loci 548

Rates of gene duplication 549

CHAPTER 21

Evolution and Development 553

Hox Genes and the Dawn of Modern EDB 554
Types of Evidence in Contemporary EDB 559
The Evolving Concept of Homology 560
Evolutionarily Conserved Developmental
Pathways 563

Gene Regulation: A Keystone of Developmental Evolution 565

Evolution of protein-coding sequences is also an important contributor to phenotypic evolution 569

Modularity in morphological evolution 569

Co-option and the evolution of novel characters 570

The developmental genetics of heterochrony 571

The evolution of allometry 573

Developmental Constraints and Morphological Evolution 574

The Molecular Genetic Basis of Gene Regulatory Evolution 578

Toward the EDB of Homo sapiens 581

CHAPTER 22

Macroevolution: Evolution above the Species Level 585

Rates of Evolution 586

Punctuated equilibrium and stasis 587

Gradualism and Saltation 590

Phylogenetic Conservatism and Change 592

The Evolution of Novelty 595

Accounting for incipient and novel features 595 Complex characteristics 597

Trends and Progress 600

Trends: Kinds and causes 600

Examples of trends 601

Are there major trends in the history of life? 602

The question of progress 605

CHAPTER 23

Evolutionary Science, Creationism, and Society 609

Creationists and Other Skeptics 610 Science, Belief, and Education 611 The Evidence for Evolution 614

The fossil record 614

Phylogenetic and comparative studies 615

Genes and genomes 615

Biogeography 616

Failures of the argument from design 616

Evolution and its mechanisms, observed 618

Refuting Creationist Arguments 619

On arguing for evolution 623

Why Should We Teach Evolution? 623

Health and medicine 624

Agriculture and natural resources 627

Environment and conservation 628

Human behavior 629

Understanding nature and humanity 631

Glossary G-1

Literature Cited LC-1

Index I-1