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Abstract, In the context of modern high-speed communication networks, decision reactivity is 

often complicated by the notion of guaranteed Quality of Service (QoS), which can either be 

related to time, packet loss or bandwidth requirements: constraints related to various types of QoS 

make some algorithms not acceptable. Due to emerging real-time and multimedia applications, 

efficient routing of information packets in dynamically changing communication network requires 

that as the load levels, traffic patterns and topology of the network change, the decision policy also 

adapts. We focused in this paper on QoS based mechanisms by developing a neuro-dynamic 

programming to construct dynamic state-dependent policies. In this paper, we present an accurate 

description of the current state- of-the-art and give an overview of our work in the use of 

reinforcement learning concepts focused on communications networks. We focus our attention by 

developing a system based on this paradigm and study the use of reinforcement learning 

approaches in three different communication networking domains: wired networks, mobile ad hoc 

networks, and packet router’s scheduling networks. 

Keywords: Self-Depedent Mechanism Decision, Quality of Service based Routing, Multi Path 

Routing. Dynamic Networks, Reinforcement Learning, Adaptive Scheduling. 

1. Introduction
*
 

Today, providing a good quality of service 

(QoS) in irregular traffic networks is an 

important challenge. Besides, the impressive 

emergence and the important demand of the 

rising generation of real-time Multi-service 

(such as Data, Voice VoD, Video-Conference, 

etc.) over communication heterogeneous 

networks, require scalability while considering 

_______ 
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a continuous QoS. This emergence of rising 

generation Internet required intensive studies 

these last years which were based on QoS 

routing for heterogeneous networks on the one 

hand and on the backbone architecture level of 

communication networks characterized by a 

high and irregular traffic on the other hand [1]. 

The basic function of QoS routing is to find 

a network path which satisfies the given 

constraints and optimize the resource 

utilization. The integration of QoS parameters 

increases the complexity of the used routing 
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algorithms. Thus, the problem of determining a 

QoS route that satisfies two or more path 

constraints (for example, delay and cost) is 

known to be NP- complete [2]. A difficulty is 

that the time required to solve the Multi-

Constrained Optimal path problem exactly 

cannot be upper-bounded by a polynomial 

function. Hence the focus has been on the 

development of pseudo-polynomial time 

algorithms, heuristics and approximation 

algorithms for multi- constrained QoS paths [3]. 

At present, several studies have been 

conducted on QoS routing algorithms which 

integrate the QoS requirements problematic for 

the routing algorithm. [4] introduce heuristics to 

find a source-to-destination path that satisfies 

two or more additive constraints on edge 

weights. [5] has proposed a polynomial time 

approximation algorithm for k multi- 

constrained path which uses a shortest path 

algorithm such as Dijkstra’s [6,7] propose a 

randomized heuristic that employs two phases. 

In the first one, a shortest path is computed for 

each of the k QoS constraints as well as for a 

linear combination of all k constraints. The 

second phase performs a randomized breadth-

first search for a solution of k multi- 

constrained problem. In [3], authors suggest 

that QoS routing in realistic networks could not 

be NP-complete regarding to a particular class 

of networks (topology and link weight 

structure). 

Due this complexity, QoS routing problems 

are divided on several classes according to 

some aspects. For example, we distinguish the 

single path routing problem and the multipath 

routing problem, where routers maintain 

multiple distinct paths of arbitrary costs 

between a source and a destination. The 

Multipath routing offers several advantages like 

good bandwidth, bounding delay variation, 

minimizing delay, and improved fault tolerance. 

So, it makes an effective use of the graph 

structure on a network, as opposed to single 

path routing which superimposes a logical 

routing tree upon the network topology. We 

find in literature many and various approaches 

that have been proposed to take into account the 

QoS requirement. The reader can refer to [8] for 

an overview. 

Constraints imposed by QoS requirements, 

such as bandwidth, delay, or loss, are referred 

to as QoS constraints, and the associated 

routing is referred to as QoS routing which is a 

part of Constrained-Based Routing (CBR). 

Interest in constrained-based routing has been 

steadily growing in the Networks. Based on 

heuristics used in all of these approaches to 

reduce their complexity, we can classified it in 

three main categories: 

Label Switching/Reservation Approaches- 

spurred by approaches like ATM PNNI, MPLS 

or GMPLS. With MPLS, fixed length labels are 

attached to packets at an ingress router, and 

forwarding decisions are based on these labels 

in the interior routers of the label-switched path. 

MPLS Traffic Engineering allows overriding 

the default routing protocol, thus forwarding 

over paths not normally considered. A resource 

reservation protocol such as RSVP must be 

employed to reserve the required resources. 

Another Architecture proposed for providing 

Internet QoS is the Differentiated Services 

architecture. Diffserv scales well by pushing 

complexity to network domain boundaries. 

Multi-Constrained Path Approaches (MCP) 

- The goal of all of these approaches is to 

retrieve the shortest path among the set of 

feasible paths between two nodes. Considerable 

work in the literature has focused on a special 

case of the MCP problem known as the 

Restricted Shortest Path (RSP) problem. The 

goal is to find the least-cost path among those 
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that satisfy only one constraint. An overview of 

these approaches can be found in [9]. 

Inductive approaches- To be able to make 

an optimal routing decision, according to 

relevant performance criteria, a network node 

requires to have a complete knowledge of the 

entire network state and an accurate prediction 

of the evolution of the networks and its 

dynamics. This, however, is impossible unless 

the routing algorithm is capable of adapting to 

the network state changes in almost real time. 

Thus, it is necessary to design intelligent and 

adaptive optimizing routing algorithms which 

take into account the network state and its 

evolution. We need to talk about QoS based 

state dependent routing algorithm. 

In this contribution, we present an accurate 

description of the current state-of-the-art and 

give an overview of our work in the use of 

reinforcement learning concepts focused on 

communication networks. We focus our 

attention by developing a system based on this 

paradigm called KOCRA for K Optimal 

Constrained path Routing Algorithm. Basically, 

these inductive approaches selects routes based 

on flow QoS requirements and network 

resource availability. After developing in 

section 2 the concept of routing in high speed 

networks, we present in section 3 the family of 

inductive approaches. After, we present our 

works based on reinforcement learning 

approaches in three different communication 

networking domains: wired networks, mobile 

ad hoc networks, and packet router’s scheduling 

networks. Last section concludes and gives 

some perspectives of this work. 

2. Routing problem 

As Internet is a large collection of more 

than 25,000 independent domains called 

autonomous systems (Ases), the cooperation 

between ASes is not optimized at the network 

level, but rather it is based on the business 

relationships between organizations. The fully-

independent management actions in each AS 

are expressed in terms of a policy-based routing 

strategy which primarily controls the outbound 

traffic of an AS and can include conflicting 

policies. A global solution for QoS routing over 

all the ASes must be able to handle both the 

differing QoS provisioning mechanisms and 

service specifications. This latter solution of 

building models of large ISP’s is so complex to 

obtain [10]. For this, Routing is divided onto 

two classes: IGP and EGP. IGP, such as OSPF 

or IS-IS, compute the interior paths in one AS, 

while EGP, such as BGP, is responsible for the 

selection of the inter-domain paths. To fulfill 

application QoS requirements, many ISPs have 

deployed mechanisms to provide differentiated 

services in their networks. In fact, in the last 

decade, the development of none of QoS 

routing proposals has turned out to be 

sufficiently appealing to become deployed in 

practice. This is because ISPs have preferred to 

overprovision their networks rather than deliver 

and manage QoS [11]. 

In the IGP or EGP cases, a routing 

algorithm is based on the hop-by-hop shortest-

path paradigm. The source of a packet specifies 

the address of the destination, and each router 

along the route forwards the packet to a 

neighbor located “closest” to the destination. 

The best optimal path is chosen according to 

given criteria. When the network is heavily 

loaded, some of the routers introduce an 

excessive delay while others are under-utilized. 

In some cases, this non-optimized usage of the 

network resources may introduce not only 

excessive delays but also high packet loss rate. 

Among routing algorithms extensively 

employed in the same AS routers, one can note: 

distance vector algorithm such as RIP and the 

link state algorithm such as OSPF or IS-IS [12]. 



Abdelhamid Mellouk et al. / VNU Journal of Science, Natural Sciences and Technology 24 (2008) 147-161 150 

3. Inductive approaches 

Modern communication networks is 

becoming a large complex distributed system 

composed by higher interoperating complex 

sub-systems based on several dynamic 

parameters. The drivers of this growth have 

included changes in technology and changes in 

regulation. In this context, the famous 

methodology approach that allows us to 

formulate this problem is dynamic 

programming which, however, is very complex 

to be solved exactly. The most popular 

formulation of the optimal distributed routing 

problem in a data network is based on a multi-

commodity flow optimization whereby a 

separable objective function is minimized with 

respect to the types of flow subject to multi-

commodity flow constraints [13], [14]. In order 

to design adaptive algorithms for dynamic 

networks routing problems, many of works are 

largely oriented and based on the 

Reinforcement Learning (RL) notion [15]. The 

salient feature of RL algorithms is the nature of 

their routing table entries which are 

probabilistic. In such algorithms, to improve the 

routing decision quality, a router tries out 

different links to see if they produce good 

routes. This mode of operation is called 

exploration. Information learnt during this 

exploration phase is used to take future 

decisions. This mode of operation is called 

exploitation. Both exploration and exploitation 

phases are necessary for effective routing and 

the choice of the outgoing interface is the action 

taken by the router. In RL algorithms, those 

learning and evaluation modes are assumed to 

happen continually. Note that, the RL 

algorithms assigns credit to actions based on 

reinforcement from the environment. In the 

case where such credit assignment is conducted 

systematically over large number of routing 

decisions, so that all actions have been 

sufficiently explored, RL algorithms converge 

to solve stochastic shortest path routing 

problems. Finally, algorithms for RL are 

distributed algorithms that take into account the 

dynamics of the network where initially no 

model of the network dynamics is assumed to 

be given. Then, the RL algorithm has to sample, 

estimate and build the model of pertinent 

aspects of the environment. 

Many of works has done to investigate the 

use of inductive approaches based on artificial 

neuronal intelligence together with biologically 

inspired techniques such as reinforcement 

learning and genetic algorithms, to control 

network behavior in real-time so as to provide 

users with the QoS that they request, and to 

improve network provide robustness and 

resilience [16-18]. 

4. KOCRA system based reinforcement 

learning in routing wired networks 

Our system, called “K Optimal Constrained 

path Routing Algorithm (KOCRA)”, contains 

three stages. The objective of the first stage is to 

select the K Best candidate paths according to 

the cost cumulative path from the source and 

the destination nodes (for simplicity, we 

consider here all link costs equal to 1). The 

second stage is used to integrate the dynamics 

of traffic. For this, a continuous end-to-end 

delay among the K Best selected Paths is 

computed using a reinforcement Q- learning 

function. In order to force the router to take the 

alternative routes regarding to the second stage, 

we used a third one which compute 

automatically a probability affected to each path 

based on packet delivery time obtained by the 

second stage and the time latency in queuing 

file associated for each path. 
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4.1. First stage: constructing K-best paths 

First of all, in spite of exploring the entire 

network environment which needs large 

computational time and space memory, our 

approach reduces this environment to K best no 

loop paths in terms of cost cumulative links. 

Thus, each router maintains a link state 

database as map of the network topology. We 

used a label setting algorithm based on the 

optimality principle and being a generalization 

of Dijkstra's algorithm [6]. In order to find these 

K best paths, a variant of Dijkstra's algorithm 

proposed in [19] was used. By using a pertinent 

data structure, the space complexity is O(Kmn), 

where K is the number of paths, m (resp. n) is 

the number of edges (resp. the number of links). 

The time complexity can be kept at 

O(knlog(kn)+k2mn) [27]. When a network link 

changes its state (i.e., goes up or down, or its 

utilization is increased or decreased), the 

network is flooded with a link state 

advertisement (LSA) message. This message 

can be issued periodically or when the actual 

link state change exceeds a certain relative or 

absolute threshold. Obviously, there is tradeoff 

between the frequency of state updates (the 

accuracy of the link state database) and the cost 

of performing those updates. In our approach, 

the link state information is updated when the 

actual link state change. Once the link state 

database at each router is updated, the router 

computes the K optimal paths. 

4.2. Second stage: Q-learning lgorithm for 

optimizing the end-to-end delay 

After finding our K best Optimal Paths 

based on link costs, the second step is to 

distribute the traffic on these K candidate paths. 

For this, we use another criteria based on the 

end-to-end delay. The reinforcement signal 

which is chosen corresponds to the estimated 

time to transfer a packet to its destination. This 

value is computed by a variant of Q-Routing 

algorithm which is considered as an 

asynchronous relaxation of the Bellman-Ford 

algorithm used in distance vector protocols. 

Typically, the packet delivery time includes 

three variables: the packet transmission time, 

the packet treatment time in the router and the 

latency in the waiting queue. In our case, the 

packet transmission time is not taken into 

account. In fact, this parameter can be neglected 

in comparison to the other ones and has no 

effect on the routing process. 

In this approach, each router x maintains in 

a Q-table a collection of values of Q(x, y, d) for 

every destination d and for every interface y. 

This value reflects a delay of delivering a 

packet for destination d via interface s. Then, 

the router x forwards the packet to the best next 

router y determined from the Q-table. Just after 

receiving this packet, the router y provides x an 

estimate of its best Q value to reach the 

destination. This new information is then added 

in the Q- values of the router x. 

The reinforcement signal T employed in the 

Q-learning algorithm can be defined as the 

minimum of the sum of the estimated Q (x, y, d) 

sent by the router y neighbor of router x and the 

latency in waiting queue qx corresponding to 

router x. 

 { }
neighbor of  x

x
y

T min q Q(x,y,d)
∈

= +  (1) 

Where Q(x, y, d), denote the estimated time 

by the router x so that the packet p reaches its 

destination d through the router y. This 

parameter does not include the latency in the 

waiting queue of the router x. The packet is sent 

to the router y which determines the optimal 

path to send this packet. 

Once the choice of the next router is made, 

the router y puts the packet in the waiting 

queue, and sends back the value T as a 
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reinforcement signal to the router x. It can 

therefore update its reinforcement function as: 

 ∆Q(x, y, d) = η(a + T - Q(x, y, d)) (2) 

α and η are the packet transmission time 

between x and y and the learning rate 

respectively. 

So, the new estimation Q'(x, y, d) can be 

written as follows: 

 Q'(x, y,d) = Q(x, y,d) (1-η)+η(T + a) (3) 

4.3. Third stage: adaptive probabilistic path 

selection 

The goal of this stage is to distribute the 

traffic on K best paths in probabilistic manner. 

To force the router to take alternative routes 

find in K best paths and not only the best one, 

we compute a probability affected to each path 

automatically. In this manner, the flow packets 

reach their destination with a time close to 

optimal, while ensuring a good exploration of 

the remaining paths. The process is based on 

the packet delivery time computed by our Q 

reinforcement learning and the latency in 

queuing file associated for each path. 

Let Di (t) be the packet delivery time for 

path i at time t. Let ( )n '
iT t  be the latency in 

queuing file associated to closest router n’ in 

the direction of path i at time t (that is, the 

neighbor of router n). The following formula 

allows us to count the probability ( )n
iP t  for 

the i
th

 path in router n at time t: 

 
βα α β

1

1 1 1 1

i

K
n
i n 'n '

i i ii

P
D TD T =

                 = ∗ ∗                          

∑
 (4) 

Where α and ß are two tuneable parameters 

that determine respectively the influence of 

delay time and waited queue time. They have 

an equivalent influence in the case of a = ß. 

This formula associates a very small probability 

for paths with high delay time and/or high 

queue time. This is due to the fact that when 

delay time (respectively waited time) increase 

the value of 
α

1 iD (t)
 
  

 respectively 
β

1 iT (t)
 
  

 

decreases. 

4.4. Performance evaluation 

To validate our results in the case of 

irregular traffic in wired networks, we take the 

results given by a well-known Djikstra’s 

algorithm (which offers to use an existing 

polynomial-time path computation) used in 

protocols such OSPF, IS-IS or CISCO EIGRP 

as a reference for our study. This choice of this 

classical approach is argued by the fact that the 

majority of ISP’s used actually this kind of 

protocols to exchange routing information in 

their networks. In order to do comparison with 

KOCRA, parameters of standard approach used 

here are fixed in order to optimize the delay and 

cost criteria simultaneously (on the rest of 

paper, we used the notation “Standard Optimal 

Multi-Path Routing Algorithm (SOMRA)” for 

this kind of algorithm). All algorithms have 

been implemented with OPNET and used the 

same data structure.  OPNET software  

constitutes  for telecommunications networks 

an appropriate modeling, scheduling and 

simulation tool. It allows the visualization of a 

physical topology of a local, metropolitan, 

distant or on board network. The protocol 

specification language is based on a formal 

description of a finite state automaton. 

The simulations presented in this article 

consisted of creating a traffic merged in 

irregular network topology, through which the 

two families of algorithms (KOCRA and 

SOMRA) computed the best paths between two 

nodes. QoS measures of each of tested 

algorithms concerns two additive constraints: 

cost and delay criteria. Results given in all the 

figures are evaluated in terms of average packet 
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end-to-end delivery time on both topologies. 

Time simulation is represented on the other axis 

of the figures. 

1) Simulation parameters on the irregular 

topology 

The topology of the network is specified by 

a collection of routers and a set of links that 

bind these routers elements. The network traffic 

is specified in the source router by setting 

several parameters like: the start time, the stop 

time, the statistical distribution for packet inter-

arrival times, the statistical distribution for 

packet size and the destination node. 

To ensure a meaningful validation of our 

algorithm performance, we devised a realistic 

simulation environment in terms of network 

characteristics, communications protocols and 

traffic patterns. We focus on IP datagram 

networks with irregular topology. The topology 

of the network employed for simulations 

includes 36 interconnected nodes with 

essentially two parts of the network, as shown 

in Fig. 1. This topology is the same used in [17] 

for their Q learning approach. 

 

 

 

 

Fig. 1. Network topology. 

The traffic is sent/received by four end 

nodes (marked in the figure noeud100, 

noeud101, noeud102 and noeud103). 

We model traffic in terms of requests 

characterized by its source and destination. 

While we concern ourselves with arrival and 

departure of flows, we do not model the data 

traffic of the flows. For simplicity, we also 

chose not to implement a proper management 

of error, flow and congestion control. In act, 

each additional control component has a 

considerable impact on the network 

performance, making very difficult to evaluate 

and to study properties of each control 

algorithm without taking in consideration the 

complex way it interacts with all the other 

control components [18]. Therefore, we chose 

to test the behavior of our algorithm such that 

the routing component can be evaluated in 

isolation. 

For our simulation results, we studied the 

performance of the algorithms for increasing 

traffic load, examining the evolution of the 

network status toward a saturation condition, 

and for temporary saturation conditions. For 

this topology, we study the performance of our 

routing strategies according a Poisson Law 

inter-arrival times statistical distribution. 

2) Simulation results 

 

 
Standard Optimal Multi-Path 

Routing Algorithm (SOMRA) 
 

 

 

K Optimal Constrained path  

Routing Algorithm (KOCRA) 

 

Fig. 2. Poisson law distribution simulations results. 

As shown in Fig. 2 which represent time 

simulation versus the average packet delivery 

time, our probabilistic K Optimal Constrained 

path Routing Algorithm (KOCRA) give better 

results than the well-known N best optimal path 

routing Algorithm SOMRA. This is due to the 

fact that in our new approach, routers are able 

to take into account not only the average of 

delivery delay but also the waiting queue time. 

Thus, they are able to adapt their decisions very 

fast and in close concordance with the network 

dynamics. In spite of the many packages taking 

secondary ways, N-optimal routing does not 
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present better performances because it rests on 

a probabilistic method to distribute the load of 

the network over the closest cost paths, and not 

on the degradation of the times of routing. So, 

in classical approach, the routers take their 

decisions only according to the average of 

delivery delay and the exploration of potentials 

good paths, none trivially best and that can give 

us betters results, is not realized. Our approach, 

with the introduction of a probabilistic module, 

responds to this inconvenience and shows better 

results for Poisson law distribution of traffic. 

Thus, mean of average packet delivery time 

obtained by KOCRA is reduced by 37% 

compared to traditional N best optimal routing 

Algorithm. 

5. AMDR based reinforcement learning in 

mobile ad hoc networks 

AMDR (Adaptive Mean Delay Routing) is 

a new adaptive routing protocol based on 

probabilities and built around two exploration 

RL agents. Exploration agents gather mean 

delay information available at each node in 

their route and calculate total delay between 

source and destination. According to the delay 

value gathered, probabilistic routing tables are 

updated at each intermediate node. In order to 

deal with mobile nodes synchronisation we 

consider, in our protocol, delay estimation 

model proposed in [20], instead of 

instantaneous delay considered in the most 

oriented delay routing protocols. 

Unlike data packets, control packets, used 

in adaptive routing, are sent in broadcast 

manner and so treated at IEEE 802.11, MAC 

layer differently than unicast packets. For this, 

we consider that trip delay of a control packet is 

not the same of a data packet. 

In AMDR, routing function is determined 

by means of very complex interactions of 

forward and backward network exploration 

agents. Forward agents report network delay 

conditions to the backward ones. So, no node 

routing updates are performed by the forward 

agents. 

AMDR uses two kinds of agents: Forward 

Exploration Packets (FEP) and Backward 

Exploration Packets (BEP). Forward agents 

explore the paths of the network, for the first 

time in reactive manner, but it continues the 

exploration proactively. 

FEP packets create a probability 

distribution at each node for its neighbors. 

Backward agents are used to propagate the 

information gathered by forward agents through 

the network, and to adjust the routing table 

entries. 

5.1. Updating routing tables 

Routing tables are updated when a BEP 

agent is received. The probabilities updating 

can take many forms, and we have chosen 

updating rules (5), (6), (7) and (8) described in 

[21]. As soon as, routing table is calculated, 

data packets are then routed according to the 

highest probabilities in the probabilistic routing 

tables. 

Unlike on demand routing protocols, there 

is no guarantee to route all packets on the same 

route because of the proactive exploration. The 

BEP agent make changes to the probability 

values at the intermediate and final node 

according to the following update rules: 

 pfd ← (pfd + r) (1+r)  (5) 

 pnd ← pnd/(1+r)    (6) 

 pnd ← pnd – rpnd    (7) 

 pfd ← pfd +r(1-pfd)  (8) 

In both the above cases, the reinforcement 

parameter r can be defined as a function of 
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delay. Here, r=k /f(c), where k > 0 and f(c) is 

the cost function used in [21]. 

5.2. Flooding optimization 

In order to improve the performance of our 

routing protocol, we introduce the MPR [22] 

concept in the broadcast process. However, the 

MPR selection according to native OLSR is 

unable to build path satisfying a given QoS 

request. To avoid this problem, we propose a 

new algorithm for MPR selection. We keep at 

each node a table called MPR table containing a 

partial view of MPR neighbors. Our algorithm 

takes into account the mean delay available at 

each node. The MPR selection algorithm based 

on mean delay is the same proposed for 

bandwidth in [22], unlike their approach for 

bandwidth MPR; we define only one kind of 

MPR which are delay MPR. Mean delay MPR 

selection algorithm is composed of the 

following steps: 

1. A node Ni selects, first, all its neighbors 

that are the only neighbors of a two hop 

node from Ni. 

2. Sort the remaining one-hop delay neighbors 

in increasing order of mean delay.  

3. Consider each one-hop neighbor in that 

order: this neighbor is selected as MPR if it 

covers at least one two-hop neighbor that 

has not yet been covered by the previous 

MPR.  

4. Mark all the selected node neighbors as 

covered and repeat step 3 until all two-hop 

neighbors are covered.  

With the present MPR selection algorithm, we 

guarantee that paths having best delays will be 

discovered but there are any guarantees about 

the overhead generated [23]. 

5.3. Performance evaluation in mobility 

scenario 

We use NS-2 simulator to implement and 

test AMDR protocol. We test the impact of 

mobility on AMDR and compare its 

performances with OLSR and AODV. We 

define a random topology of 50 nodes. 

Table 1. Simulation settings scenario 2 

Traffic model Exponential 

Surface of simulation 1000m,1000m 

Packets size  512 byte 

Bandwidth  1Mbs 

Rate of mobility 5m /s , 10m/s 

Number of connections 5, 10, 15, 20, 25 

Rate 5 paquets/s 

Simulation duration  500 s 

 

Table 1 summarizes the simulation setting. 

We injected different loads of traffics. After 

each simulation we calculate the end to end 

delay realized by each protocol. Figure 3 

summarizes our comparison. We can observe 

that with low load, there is no difference in end 

to end delays. However, more the network is 

loaded more AMDR is better in term of delay. 

Such performance is justified by the adaptation 

of AMDR to changes in the network load. In 

the case of AODV and OLSR an additional 

delay is impossible to circumvent for adapting 

to changes. 
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Fig. 3. Packets delay comparison for mobility 

scenario. 

Comparing loss rate performance between 

AODV, AMDR and OLSR, shows in figure 4 

that both AMDR and OLSR have, in a low 

loaded network, the same performance when 

AODV realises the best performances. 

However, in a high loaded network (case of 20 

or 25 connexions), AODV becomes less good 

than AMDR and OLSR. We justify such results 

by the adaptation of AMDR to load changes 

when AODV needs more route request 

function. 

 

 

 

 

 

 

Fig. 4. Loss rate comparison for mobility scenario. 

6. A system based reinforcement learning in 

packet scheduling communications network 

routing 

In the dynamic environment the scheduler 

take the actual evolution of the process into 

account. It is allowed to make the decisions as 

the scheduling process actually evolves and 

more information becomes available. For that, 

we consider at each router an agent that can 

make decision. This decision-maker collects 

information gathered by mobile agents and then 

decides which action to perform after learning 

the current situation. We will focus on dynamic 

technique and will formulate the packet 

scheduling problem through several routers as a 

multi-agent Markov Decision Problem (MDP). 

As Machine learning techniques, we use 

reinforcement learning to compute a good 

policy in a multi-agent system. Simultaneous 

decision making in a dynamic environment is 

modelled using multi-agent Markov Decision 

Processes (MMDPs) [24]. However, learning in 

multi-agent system suffers from several 

limitations such the exponential growing of 

number of states, actions and parameters with 

the number of agents. In addition, since agents 

carry out actions simultaneously so they have 

evolving behaviours, transitions are non-

stationary. Since centralized MAS may be 

considered as a huge MDP, we work with 

decentralized system where each agent learns 

individually in environment improved with 

information gathered by mobile agents. 

6.1. The learning algorithm 

The model of the environment’s dynamics, 

the transition probabilities and rewards is 

unknown in learning of a single agent MDP and 

consequently the subsequent multi-agent MDP. 

So, the learning of the optimal solution of a 

problem is done by agents through interaction 

with the environment. 

We describe the global scheduling problem 

as a multi-agent MDPs in a decentralized 

approach. We derive a multi-agent learning 

algorithm from traditional reinforcement 

learning method based on Markov decision 

process to construct global solutions from 

solutions to the individual MDPs. In this case, 

we assume that the agents work independently 

by making their trials in the simulated 

environment. The system state s is described by 

the space state of all agents; an action a
i
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describes which queue is serviced in the time 

slot. Therefore, the goal of scheduling is to find 

an optimal policy π
*

 such that the rewards 

accumulated are maximized 

The proposed algorithm converges to the 

optimal policy and optimal action value 

function for the multi-agent MDP since the 

difference between standard multi-agent and 

our decentralized multi-agent MDP model is 

the global states space for each action set A
i
 of 

an agent i. 

The rewards may depend both on the 

current situation and on the selected action and 

express the desired optimization goal. In our 

approach, the global action a is a vector of 

single action made by distributed agents each 

associated with one of the n routers. 

Learning here means iteratively improving 

the selection policy according to the 

maximization of the global reward. This is done 

by a Q-learning rule adapted to the local 

selection process (eq. 19). The learning rule 

relates the local scheduling process of agent i to 

the global optimization goal by considering the 

global reward R. 

If Q
i
 converges the Q

i,*
 predicts if the action 

a
i
 would be selected next. This action will be 

chosen by a policy greedy. 

In a single-agent learning case, Q-learning 

converges to the optimal action independent of 

the action selection strategy. However, in a 

multi-agent situation, the action selection 

strategy becomes crucial for convergence to any 

joint action. A major challenge in defining a 

suitable strategy for the selection of actions is 

to make a trade-off between exploration of new 

policies and exploitation of existing policies. 

In our research, we use a Boltzmann 

distribution [25] for the probability of choosing 

an action by each agent. In this strategy, each 

agent derive a scheduling policy from the 

current value of Q
i
 matrix and then update Q

i
 

using the rewards from actions chosen by the 

current scheduling policy according to a 

probability distribution πi
(s, a

i
):  

( )
( )( )
( )( )

π

i ' i

i i

i i

i i '

a A

exp Q s,a / T
s,a

exp Q s,a / T
∈

=

∑

   (9) 

where exp is the exponential function and T is a 

parameter called temperature. The value of the 

temperature determines the possibility for an 

agent to balance between exploration and 

exploitation. For high temperature, even when 

an expected value of a given action is high, an 

agent may still choose an action that appears 

less desirable. In contrast, low temperature 

values support more exploitation, as the agent is 

more expected to have discovered the true 

estimates of different actions. The three 

important settings for the temperature are the 

initial value, the rate of decrease and the 

number of steps until it reaches its lowest limit. 

This lower limit must be set to a value close 

enough to 0 to allow the learners to converge by 

stopping their exploration. 

In our work, we start with a very high value 

for the temperature to force the agents to make 

random moves until the temperature reaches a 

low enough value to play a part in the learning. 

This is done when the agents are gathering 

information about the environment or the other 

agents. The temperature defined as a function of 

iterations is given by: 

 T(x) = (e
−sx 

 ∗ Tmax) + 1  (10) 

where x is the iteration number, s is the rate of 

decay and Tmax is the starting temperature. 

In this section we present an algorithm 

called DEMAL (Decentralized Multi-Agent 

Learning) that uses Q-learning and 

decentralization on the level of the action. 

 

Algorithm DEMAL 
Repeat 
Initialize s = ( s1, ….., sn) 
  Repeat 
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    For each agent i 
    Choose ai using Boltzman formula  
    Take action ai , observe reward ri and state s’ 
     Qi(s, ai )← Qi(s, ai )+α{R+γ max [Qi(s’, ai’) + ξ B(s’, ai’)]  − 

Qi(s, ai)} 

 ai’    

     s ← s’ 
   until s is terminal 
until algorithm converges 

6.2. Performance evaluation 

We carried out our evaluation in two stages. 

The first stage consists to realizing the 

scheduling on level of one router. For that, we 

just consider in this stage a single agent MDP. 

In the second stage, we solve the whole 

problem which concerns the optimization of the 

end to end queuing delay through the global 

scheduling. Hence, we apply our algorithm 

based on the multi-agent MDP in its 

decentralized version. We start to describe the 

context of the first phase. 

In each router, an agent deals with 

scheduling N classes of traffic, where each 

traffic class has its own queue qi, for i = 1…N. 

Let qN denote the queue for best-effort traffic, 

which has no predefined delay requirements 

and R1, R2,.., RN-1 denote the delay 

requirements of the remaining classes. Let M1, 

M2,…, MN-1 denote the measured delays of 

these classes observed over the last P packets. 

We assume that all packets have a fixed size. 

We consider also that a fixed length timeslot is 

required for transmitting a packet and at most 

one packet can be serviced at each timeslot. The 

arrival of packets is described by a Bernoulli 

process, where the mean arrival rate µ i for qi is 

represented by the probability of a packet 

arriving for qi in any timeslot. Our goal is to 

learn a scheduling policy that ensures Mi ≤ Ri 

for i=1,…,N-1. For the simulation, we used a 

three queue system that is Q1, Q2 and the best 

effort queue and the parameters of this 

simulation are given in table 2. We have 

considered two cases according to the 

availability of resource. For investigating the 

case where the output link capacity of the router 

is sufficient we assume that this capacity is 500 

Kbps. In this case, a sufficient amount of 

capacity is provided for each queue so our 

algorithm satisfied the mean delay requirements 

for Q1 and Q2 (see fig.5). We have also 

observed that our approach requires 1.5 x 104 

timeslots in terms of convergence time. In the 

second scenario (table 3) we consider the case 

where the output link capacity of the router is 

small and equal to 300 Kbps. The result of this 

case is shown in fig. 6. We observe that an 

allocation of a share of the available bandwidth 

is given to the delay-sensitive class Q1 and then 

to Q2 and the best effort queue. This is carried 

out on the basis of information gathered by a 

mobile agent. Also, we take ε = 0.2 and γ = 0.5. 

In the second part of our evaluation, we 

consider a network with several routers 

connected to each other like in [26]. We 

introduce also the mobile agents to gather and 

distribute necessary and complete information 

in order to help the agents to update their 

knowledge of the environment. The figures 7 

show that in both scenarios, the presence of 

mobile agents provides a better queuing delay 

for all routers. 

Table 2. Simulation parameters: scenario 1. 

Queue 

Arrival 

Rate 

(packets/ 

timeslot) 

Mean Delay 

Requirement 

eBi 

Kbps 

Q1 0.30 8 64 

Q2 0.20 2 128 

BE 0.40 Best-effort Best-effort 
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Table 3. Simulation parameters: scenario 2 

Queue 

Arrival 

Rate 
packets/ 

timeslot 

Mean Delay 

Requirement 

eBi 

Kbps 

Q1 0.30 4 128 

Q2 0.20 6 256 

BE 0.40 BE BE 

 

                   
            Fig. 5. Mean Delay for three classes.                           Fig. 6. Average throughput of three queues. 

 

 

 

 

 

 

Fig. 7. Average queuing delay (left: scenario 1, right: scenario2). 

7. Conclusion 

We presented in this paper our system 

based on reinforcement learning for different 

network communication domains. 

First of all, we have focused our attention in 

some special kind of Constrained Based 

Routing in wired networks which we called 

QoS self-optimization Routing. Our algorithm 

is based on a multi-path routing technique 

combined with the Q- Routing algorithm and is 

tested for improving distribution of traffic on 

N-Best paths. The learning algorithm is based 

on founding N-Best paths in term of hops router 

and the minimization of the average packet 

delivery time on these paths. The performance 

of our algorithm is evaluated experimentally 

with OPNET simulator for different levels of 

traffic’s load and compared to standard optimal 

path routing algorithms. Our approach proves 

superior to a classical algorithms and is able to 

route efficiently in networks even when critical 

aspects are allowed to vary dynamically. The 

fact that the reinforcement signal is continuously 

updated, parameter’s adaptation of our system 

take into account variations of traffic. 
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Secondary, we study the use of 

reinforcement leaning in AMDR algorithm in 

the case of Mobile Ad Hoc Networks. It is 

shown from simulation results that combining 

proactive exploration agents with the on-

demand route discovery mechanism, the 

AMDR routing algorithm would give reduced 

end-to-end delay and route discovery latency 

with high connectivity. This is ensured because 

of the availability of alternative routes in our 

algorithm. The alone case where our approach 

can provide more important delay is the first 

connection where any route is yet established. 

On the other hand, the use of delay-MPR 

mechanism, guarantees that the overhead 

generated will be reduced. 

In the last part, we address the problem of 

optimizing the queuing delay in several routers 

of a network, through a global packet 

scheduling. We formulated this problem as a 

multi-agent MDP and used the decentralized 

version since multi-agent MDPs usually have 

huge state and action spaces (because they grow 

exponentially with the number of agents). This 

decentralized MDP is improved by ant-like 

mobile agent on the level of each router to 

guarantee a global view of the system’s state. 

We presented a modified Q- learning algorithm 

in the decentralized approach. Our simulation 

shows that the proposed approach leads to 

better results than when the multi- agent system 

acts alone. 

Finally, extensions of the framework for 

using these techniques across hybrid networks 

to achieve end-to-end QoS needs to be 

investigated, in particular on large scalable 

networks. Another challenging area concerns 

the composite metric used in routing packets 

(especially residual bandwidth) which is so 

complex and the conditioning of different 

models in order to take into account other 

parameters like the information type of each 

flow packet (real-time, VBR, …). 
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