
VNU Journal of Science, Natural Sciences and Technology 24 (2008) 133-146

133

An experience in developing embedded software using JNI

 Nguyen Thi Thu Trang1,*, Tran Canh Toan1, Nguyen Manh Tuan1,

Cao Tuan Dung1, Takenobu Aoshima2

1
Hanoi University of Technology, No 1 Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam

2
Matsushita Electric Industrial Co., Ltd, System Engineering Center, Japan

Received 31 October 2007

Abstract. Embedded software grows more and more rapidly and complicatedly. This paper

proposes a new structure and a comprehensible process to develop embedded software in JNI, a

new programming framework allowing Java code running in a JVM to call or be called by native

application and library written in C/C++. Therefore, programmer can develop application that

benefit the simplicity and reusability features of Java and can always reuse legacy code for

controlling device effectively written in C/C++ for embedded applications. Some experiences have

summarized through two implemented case studies.

Keywords: Embedded software, JNI, RTSJ

1. Introduction
*

Embedded software has traditionally been

thought of as "software on small computers"

[1]. In this traditional view, the principal

problem is resource limitations: small memory,

small data word sizes and relatively slow

clocks. Embedded software today is written

using low level programming languages such as

C or even Assembler to cope with the tight

constraints on performance and cost typical of

most embedded systems [2].

The C programming language is currently

quite popular for small embedded devices. C’s

main advantage is its flexibility. It is quite easy

to interoperate with other language and

hardware. However, this advantage often easily

turns into disadvantages as project complexity

* Corresponding author.

 Email: trangntt-fit@mail.hut.edu.vn

increases [3]. C does not provide enough

abstraction to program large and complex

embedded systems effectively, even on midsize

projects. Moreover, it is difficult to maintain the

code and describe complex algorithms using C.

C++ introduces many enhancements to C,

most of which support reusability of code.

However, C++ is complex and cumbersome.

Putting aside its complexity, the C++ approach

simply cannot guarantee the long-term support,

product development and pool of qualified

programmers that will be critical to the

successful development of very large real-time

systems and development projects that span

decades, as NASA and military projects do [3].

Java platform is a better choice on all

counts [4-6]. Java is more abstract than C,

simpler than C++ and it is supported by a large

and growing community of active software

developers. The huge amount of available

N.T.T. Trang et al. / VNU Journal of Science, Natural Sciences and Technology 24 (2008) 133-146

134

packages, its efficiency, platform independence

and ease of use make it the platform of choice

for many developers around the world [6].

Although a very extensive API is available with

classes encapsulating a large number of

peripherals, it is not possible to provide an

interface for every device that can be connected

to a computer system. Therefore, the Java

Native Interface (JNI) was introduced in Java

1.1 [7].

JNI is a programming framework that

allows Java code running in the Java Virtual

Machine (JVM) to call and be called by native

applications and libraries written in other

languages, such as C, C++ and assembly. The

JNI is used to write native methods to handle

situations when an application can not be

written entirely in the Java. It is also used to

modify an existing application, written in

another programming language, to be accessible

to Java applications.

This paper exposes some experiences in

developing embedded software using JNI

technology. We present a structure for

embedded software which includes two parts:

upper stream written in Java and lower stream

written in C. Therefore, we can utilize Java for

upper stream with some features such as object-

oriented programming, ease to maintenance and

high productivity while C is used to control the

device effectively. JNI is used to connect these

two parts of this structure. If embedded system

is a real-time system, RTSJ (Real-Time

Specification for Java) is used for upper stream

to implement real-time aspects. In this paper,

we present our process to develop embedded

software using JNI through two case studies.

The first is the translation of a movie player

source code in C/C++ to Java and the second is

implementation of a control program for a

movie camera.

The remainder of this paper is organized as

follows: In section 2 we give an overview of the

JNI and RTSJ technologies. We show a

structure for embedded system software in

section 3. Section 4 introduces the process we

used to develop embedded software. Two case

studies are examined in section 5. Section 6

discusses related works. We conclude our

results and future work in section 7.

2. Background

This section introduces JNI and RTSJ

technology.

2.1. JNI

The Java™ Native Interface (JNI) [7] is a

powerful feature of the Java platform.

Applications that use the JNI can incorporate

native code written in programming languages

such as C and C++, as well as code written in

the Java programming language. The JNI

allows programmers to take advantage of the

power of the Java platform, without having to

abandon their investments in legacy code.

Because the JNI is a part of the Java platform,

programmers can address interoperability issues

once, and expect their solution to work with all

implementations of the Java platform.

As a part of the Java virtual machine

implementation, the JNI is a two-way interface

that allows Java applications to invoke native

code and vice versa which is illustrated in

Fig. 1.

N.T.T. Trang et al. / VNU Journal of Science, Natural Sciences and Technology 24 (2008) 133-146

135

Fig. 1. Role of JNI

The JNI is designed to handle situations

where we need to combine Java applications

with native code. As a two-way interface, the

JNI can support two types of native code:

native libraries and native applications.

We can use the JNI to write native methods

that allow Java applications to call functions

implemented in native libraries. Java

applications call native methods in the same

way that they call methods implemented in the

Java programming language. Behind the scenes,

however, native methods are implemented in

another language and reside in native libraries.

The JNI supports an invocation interface

that allows embedding a Java virtual machine

implementation into native applications. Native

applications can link with a native library that

implements the Java virtual machine, and then

use the invocation interface to execute software

components written in the Java programming

language. For example, a web browser written

in C can execute downloaded applets in an

embedded Java virtual machine

implementation.

2.2. RTSJ

Real-Time Specification for Java (RTSJ)

[3] is one of technologies in Project Mackinac -

the first commercial implementation by Sun

Microsystems of JSR-1. Its purpose is to

provide a real-time implementation that meets

the stringent needs of real-time developers

while continuing to offer all of the other

advantages of the Java programming language.

RTSJ supports both hard real-time and non-

real-time functionality in a single system based

on the Java Hotspot platform.

The RTSJ makes several modifications to

the Java specification in order to make true real-

time processing possible. The RTSJ represents

important technological advances in the

following six areas:

• Scheduling

• Memory Management

• Synchronization

• Asynchronous Event Mechanism

• Asynchronous Transfer of Control

• Physical Memory Access

The sixth is the one that real-time

developers expect and demand in a real-time

system. In this paper, we concentrate in two

technologies: Memory Management and

Physical Memory Access [8].

1) Memory management

The trends in real-time development

suggest that in the future, real-time applications

will, in fact, become mixed applications, with

various threads running in the hard real- time

(HRT), soft real-time (SRT), and non-real-time

N.T.T. Trang et al. / VNU Journal of Science, Natural Sciences and Technology 24 (2008) 133-146

136

(NRT) zones, depending on the degree of

temporal control needed in each case. In the

C/C++ world, memory management is done

manually; program logic determines when

memory is allocated (malloc) and when it is

freed (free). Program logic controls the lifetime

of a memory object. In Java, in contrast,

memory management is automatic. Program

logic still decides when objects are created in

memory (new), but there is no way for the

programmer to exercise direct control over the

freeing of that memory. The Java garbage

collector handles this task on behalf of the

application.

Developers of non-real-time applications

derive a great benefit from the garbage

collector, which saves programming time and

makes applications more reliable. However, the

garbage collector is not compatible with HRT

applications because it is difficult to predict

when garbage collection will occur and how

long it will take to complete.

The RTSJ provides the programmer with an

environment in which application logic suffers

zero interference from the garbage collector, by

introducing a new memory model called scoped

memory. In scoped memory, the lifetime of a

memory object is determined by program

scope, as shown here:

run() {

//This is the scope of this thread.

}

The RTSJ allows the application developer

to assign everything in the run() method,

including calls to other methods, to an

application-defined heap. Application-defined

heaps are accessed by logic in a particular

scope. So when you create a thread, you can

give it one of these application- defined heaps.

The garbage collector never collects objects in

these heaps. Anytime a new() occurs in this

scope, the object goes into the application-

defined heap, not into the regular Java heap.

The entire contents of the application-defined

heap goes out of scope as soon as the

application completes the run() method. As

soon as it goes out of scope, all of the memory

objects in the application-defined heap are

destroyed instantaneously.

A garbage collection process takes time

because the garbage collector has to traverse the

entire heap, figure out which objects are still

pointed to, and destroy only those objects that

are not pointed to. In contrast, there is no time

lost when the application-defined heap is

cleared. Moreover, the garbage collector halts

execution of all its associated threads while

garbage collection is going on. Threads that use

scoped memory do not suffer interference from

the garbage collector.

Another memory model unique to the RTSJ

is immortal memory. Like scoped memory,

immortal memory is never subject to garbage

collection; unlike scoped memory, however,

memory objects created in immortal memory

remain in memory for the duration of the

application, even if there are no references to

them.

Both scoped and immortal memories are

reserved for HRT threads. The RTSJ provides

for SRT threads as well. What makes SRT “soft

real-time” is that threads in this zone do take

advantage of automatic garbage collection?

However, the SRT garbage collector must be

able to interact with the application in order to

avoid interfering with the predictability of the

real- time applications running in the SRT zone.

The initial release of Project Mackinac might

support SRT.

2) Physical memory access

The PhysicalMemoryManager is available

for use by the various physical memory accessor

objects to create objects of the correct type that

N.T.T. Trang et al. / VNU Journal of Science, Natural Sciences and Technology 24 (2008) 133-146

137

are bound to areas of physical memory with the

appropriate characteristics – or with appropriate

accessor behavior. Examples of characteristics

that might be specified are: DMA memory,

accessors with byte swapping, etc.

The base implementation will provide a

PhysicalMemoryManager and a set of

PhysicalMemoryTypeFilter classes that

correctly identify memory classes that are

standard for the (OS, JVM, and processor)

platform.

OEMs may provide

PhysicalMemoryTypeFilter classes that allow

additional characteristics of memory devices to

be specified. Memory attributes that are

configured may not be compatible with one

another. For instance, copy-back cache enable

may be incompatible with execute-only. In this

case, the implementation of memory filters may

detect conflicts and throw a

MemoryTypeConflictException, but since

filters are not part of the normative RTSJ, this

exception is at best advisory.

3. The structure for embedded software

While developing embedded software for a

device using pure Java, Java requires much

more memory than C or C++ and even with JIT

compilers, it runs more slowly. However, Java

applications do not depend on platforms. Using

Java is intended to reduce software

development cost and software distribution

cost.

As a result, we propose a structure for

embedded software which integrates advantage

of C, C++ and Java languages. This structure

includes two parts: lower stream written in C

and upper stream written in Java. The proposed

structure is illustrated in Fig. 2.

Upper

stream

written

in Java

 native interface native interface

 written in C written in C Lower

stream

Fig. 2. The structure for embedded software.

N.T.T. Trang et al. / VNU Journal of Science, Natural Sciences and Technology 24 (2008) 133-146

138

In this structure, the lower stream has the

role to interact with device or operating systems

while upper stream has the role to control the

main program process. The lower stream is

changed when we change the operating system

or device (same type) and may not have any

architecture. The upper stream is written in Java

so it is platform independence. The architecture

of the upper stream is very important, because it

affects reusability and easy maintenance.

JNI technology is used to connect these two

parts of the structure. If embedded system is a

real-time system, RTSJ is used for upper stream

– written in Java.

This structure is better than classic

embedded software structure where using only

C/C++ languages. It has both advantages of

C/C++ and Java. The product still keeps the

efficiency (performance), in addition ease to

maintain, high programmer productivity and

platform portable.

Portable in this case does not mean that the

embedded applications can run in any OS

without changing the source code. In the

structure we propose, upper stream is platform

portable while lower stream is not. The lower

stream written in C/C++ calls the APIs to

control the device. When the platform is

changed, these APIs are changed too.

Therefore, we also have to change the lower

stream, but not much. We only have to search

the SDK of the device and write the native

functions that do the same tasks, called by JNI.

The most considerable point here is the ability

to separate the dependent and independent part

of embedded software and reject the large part

of platform independence.

4. The process to develop embedded software

The process to develop embedded software

we proposed in this paper follows the above

structure for embedded software. First, we

analyze existing C or C++ programs which

have functions controlling the device. Then we

redesign the upper stream in object-oriented

technology and construct with native method

using JNI.

Fig. 3. The process to develop embedded software.

The proposed process shown in Fig. 3

includes four steps as follows:

4.1. Step 1: Find C/C++ program that has

functions controlling the device.

Most of embedded software is still written

in C/C++ so this is the store of legacy software

source codes which have features controlling

the device. Therefore, the best first step to

develop an embedded system in Java is

searching the C/C++ programs which can

control the device. We can search them in the

device manufactory home page, or in other

developer pages.

N.T.T. Trang et al. / VNU Journal of Science, Natural Sciences and Technology 24 (2008) 133-146

139

4.2. Step 2: Analyze source code and find out

the Bottom APIs of this program.

After finding a satisfied control program,

the next step is analyzing the source code of

this program. The important task of this step is

to find out the APIs in the lower layer of this

program which access the device or Operating

System (OS) - called Bottom APIs. These

Bottom APIs are written in native code (C/C++)

and we must pack them in functions to do some

task for controlling the device or OS. These

functions will be called by JNI from Java

Program. They are the lower stream in this

structure.

To find out the Bottom APIs, we must have

the functions called graph by walking through

the source code or using Code Analyzer. The

Bottom APIs must be functions that are leaves

of this graph. This means that the Bottom APIs

are called by other functions and it does not call

any functions. Moreover, to find which the

Bottom APIs in above functions are, we have to

know the main task of these functions by

searching in development guide, Internet or

other resources. Again, the Bottom APIs are

functions that access the device or OS.

It is not necessary to use all the Bottom

APIs in the lower stream. There are some

Bottom APIs which both native language and

Java have (such as malloc in C and new in

Java). We use them in upper stream, other than

call them in native code by JNI.

Another task in this step is to discover the

structure of this program. This task is also

important, because if we know the structure of

this program, we will save our time to redesign

this program in Java (in next step). We can

detach some concerned modules if the program

is so complex.

To grasp the structure of the program, we

should wade through the program documents or

developer site of this program. If the program is

well documented with design specification, this

step will be easier. For programs with poor

documentation, we have to analyze by

ourselves. This task is so difficult, because

structure of C program is not easy to

understand.

By our experiences, with these programs,

we must know the basic structure of type of

these programs. For example, web-cam

controller programs have three basic modules:

controller, grabber, and display. The role of

controller is to control the web-cam (turn on,

turn off, rotate the web-cam left, right, up,

down…). The role of grabber is to get the data

from web-cam sensor and pass to display

module. And the role of display module is to

convert data from grabber to suitable format to

display.

Then we should detect the sub module of

each basic module. We can use the function

called graph of the program to do this task other

than walking through the source code.

After completing this step, we have a list of

Bottom APIs which are called by JNI from Java

program. We also grasp the structure of this

program, detach concerned modules.

4.3. Step 3: Redesign the upper stream by

Object Oriented Analysis and Design (OOAD).

We now have the list of Bottom APIs which

are called by JNI and the structure of C

program. In this step, we detach the bottom

APIs from source program. The remainder is

redesigned in Java by OOAD.

This step defines the new program

architecture. We should care about the

reusability, portability, extensibility and ease

for maintenance of this design. Also, we should

focus on lower classes of this program which

call the native code by JNI. Because in some

case, native functions have to call-back

methods in Java.

N.T.T. Trang et al. / VNU Journal of Science, Natural Sciences and Technology 24 (2008) 133-146

140

4.4. Step 4: Construct upper stream and glue

with native method using JNI.

Based on above design, the remainder work

is implementing the upper stream in Java, and

packing the Bottom APIs in some functions to

do specific tasks. Then we compile lower

stream and generate the shared library depends

on operating system.

5. Experiment in two case studies

To illustrate our suggestion, this section

introduces two case studies which are

implemented successfully in Laboratory of

Department of Software Engineering, Faculty

of Information Technology, Hanoi University

of Technology (FIT-HUT). This is a

collaboration research project between

Department of Software Engineering, FIT-HUT

and Panasonic R&D.

5.1. Overview two case studies

1. Case study 1:

In this case study, we implement a Linux

Web-cam Controller program for Logitech

Quick-Cam Orbit MP shown in Fig. 4. Logitech

Quick Cam Chat webcam is an affordable and

complete starter kit for adding live video and

audio to online communications.

Fig. 4. Logitech Quick Cam Chat

This device has many advance features,

such as:

• Interface: USB 2.0 (USB 1.1 compatible)

• Image Sensor: 1.3 Mega pixel

• Still Image Capture Resolution: 1.3 Mega

pixels (up to 4 Mega pixels software

enhanced)

• Still Image Capture Format: JPEG

• Pan/Tilt: 189 degree/ 102 degree

• Audio Capture: Built-in microphone

• Compatibility: PC, Mac.

Our implementation named QCamUvc has

the following features:

Controlling the Quick Cam (turn on, turn

off the device, rotate it left, right, up, down,

reset to the center position,…).

• Grabbing the video data from this device.

• Display the data by using SDL library [9].

• Adjust display properties (brightness, frame

rate, contract…).

• Save the video and picture files.

2. Case Study 2:

This case study illustrates reusing of source

code for embedded system by converting a

movie player program from C/C++ to Java and

calls the bottom APIs using JNI technology.

We choose XAnim [10] as the source program.

XAnim (pronounced: eks-'an-im) is a program

for playing a wide variety of animation, audio

and video formats on UNIX X11 machines. It

was written mainly for machines running UNIX

(or a UNIX derivatives), but can also be

compiled and run on VAX VMS machines

(although without audio support). It has also

been ported to the Amiga and to W95/NT.

Our implemented Linux Media Player name

JNIXAnim supports two file types, one for

audio, and one for video:

• WAV files: PCM format

N.T.T. Trang et al. / VNU Journal of Science, Natural Sciences and Technology 24 (2008) 133-146

141

• AVI files: with MSVC (CRAM8 and

CRAM16) and MJPEG codec.

5.2. Detail implementation of two case studies

1. Case Study 1:

First, we found the Linux driver called

UVC (Usb Video Controller) [11] for this

Quick Cam, configured and installed it in

Fedora Core 6 Linux OS. Then, we searched

the Linux controller program. Unfortunately,

Logitech site does not support any program so

we have to search in other sites. We have found

one called luvcview in the open source site

http://developer.berlios.de. This program has

the features as we expect so we choose it for

implementation.

This program has four main parts:

Controller, Grabber, Display and GUI, User

Event Handle. Based on proposed approach, we

analyzed source code and found the Bottom

APIs of this program:

• ioctl: stands for Input/Output ConTroL.

ioctl() is an API in standard C library and is

enhanced in v4l2 API.

• open: a function to open the device and get

the file description for this device.

• close: a function to close the device has file

description pass for this function.

• SDL library: stands for Simple Direct

Media Layer. SDL library is a cross-

platform multimedia library designed to

provide low level access to audio, keyboard,

mouse, joystick, 3D hardware via OpenGL,

and 2D video frame buffer.

After understanding logic and order of

Luvcview, we separate Bottom API from

source code and the rest was redesigned by

OOP using Java. We concentrate about three

classes: QCam, Grabber, and Controller. There

classes contain JNI method to call the native

code. Fig. 5 shows the overall class diagram of

QCamUvc.

Fig. 5. Class diagram of QCamUvc.

Then we pack the Bottom APIs found in

some functions to open/close the device, turn

on/off video stream mode, init the display

window by SDL, grab the video, decompress

N.T.T. Trang et al. / VNU Journal of Science, Natural Sciences and Technology 24 (2008) 133-146

142

MJPEG data to YUV422 and display YUV422

data by SDL.

2. Case Study 2:

In the beginning, we have suggested to

choose MPlayer or Gnash for our

implementation. MPlayer is a good movie

player program. All features including codec,

GUI and documentation are perfect but the

source code is too large. There are more than

1000 C files. Gnash is a flash player and run not

smoothly. We have found some other Linux

media players such as Sinek, FFmpeg. After

comparing them, we have chosen XAnim

because its size is medium and feature is quite

better than others.

In the scope of implementation, we

concentrate on five modules: Media files

reader, wav player, avi player, audio video

synchronizer and codec.

First, we find the Bottom APIs including:

• open, close, ioctl

• write (int fildes, const void *buf, size_t

nbyte): The write() function attempt to write

nbyte bytes from the buffer pointed to by

buf to the file associated with the open file

descriptor, fildes.

• X11 library [12]: X11 is window manager

for Unix OS. X11 uses a client-server

model which is illustrated in Fig. 6. An X

server communicates with various X client

programs. X11 library brings the developer

the APIs for working on X11.

Fig. 6. Client-server model in X11.

Then five modules are detached from the

XAnim program. This task took much time

because XAnim’s structure is complex, and the

XAnim author used some techniques that

difficult to monitor the main process such as

function pointer, or preprocessors. It took our

team two months to understand the XAnim

structure and detach the modules we care.

User’s workstation

 Remote
 hi

X

Keyboard Mouse

X Server

X client

Screen

X client

N.T.T. Trang et al. / VNU Journal of Science, Natural Sciences and Technology 24 (2008) 133-146

143

Based on five modules we have detached,

we redesign the XAnim program with desired

features. JNIXAnim – our implementation of

XAnim has three important classes: Controller,

AVIPlayer, and WAVPlayer which declare the

native method. Controller class defines the

functions that init, turn on/off, and adjust

volume of the sound card. WAVPlayer class

defines the functions that write to sound card

the audio buffer. AVIPlayer class has a

WAVPlayer to play the audio in the video file.

It also defines the functions to call the X11

APIs to init the display window, and display the

raw video data in RGB format. Media file

reader module is switched to upper stream.

There are some difficulties when we

construct this case study because of XAnim’s

structure and APIs. We are not familiar with

X11 APIs so it took much time to implement

native code to use these APIs. In addition,

codec module in XAnim is influenced by many

user defined structures. We must restrict this

influence by walking through the source code to

grasp the meaning of structure element, and just

retain the influenced element, to design the data

flow for this module.

Another difficulty in the constructing step is

the synchronization of the audio and video

player as garbage collector in Java is called

automatically. We can use memory

management of RTSJ to solve this problem so

that it does not depend on garbage collector

invocation.

3) Some results:

After implementing two case studies, we

have made some comparisons between our

target programs and source or other programs in

some features such as size of source code, used

memory, etc. Table 1 and Table 2 is the

comparison of source code size for two case

studies.

Table 1 shows the comparison in size of

source code (in Line Of Codes – LOCs) for

some main modules between Luvcview –

source device control program written in C and

QCamUvc – target program we have developed

based on our supposed structure and process.

Size of source code of our implementation in

case study 1 is much smaller than the source

program (2658 LOCs in total).

Table 1. Comparison in size of source code between luvcview and qcamuvc

Module Luvcview (LOCs) QCamUvc (LOCs)

Controller 1,669 1,274

Grabber, Decode and Display 1,546 1,444
GUI and Event Handle 1,549 1,114

Other (Save Image, Video, etc) 2,915 1,189

Total 7,679 5,021

Table 2 shows the comparison in size of

source code between XAnim – source movie

player program written in C and JNIXAnim –

JNI version for XAnim. Size of source code of

JNIXAnim is about one-third smaller than the

source program as JNIXAnim supports only

wav and avi formats.

N.T.T. Trang et al. / VNU Journal of Science, Natural Sciences and Technology 24 (2008) 133-146

144

Table 2. Comparison in size of source code between XANIM and JNIXANIM

Module XAnim (LOCs) JNIXAnim (LOCs)

Read Media Files 5,163 2,437

Decoder 1,816 1,624

Display 1,453 200

Controller 1,147 240
GUI and Event Handle 3,451 670

Synchronize 1,104 120

Others 576 115

Total 14,710 5,406

Table 3 shows the result when comparing

about used memory (in MB) between JMF

(Java Media Framework) and JNIXAnim – our

implemented JNI version. JMF is a Java

Library that enables audio, video and other

time-based media to be added to Java

applications and applets – that means pure Java.

Therefore, memory used in JMF is much more

than our implementation which uses C source

code in lower stream to control the device

illustrated in Table 3.

Table 3. Comparison in used memory of between JMF and JNIXANIM

Time JMF (MB) JNIXAnim (MB)

Init 22.7 8.4

Start playing 33.4 18.8

After 30 seconds 44.3 26.7

6. Related work

Relating to works of developing embedded

software, many researches have been proposed

[6, 13-15].

The work of Martin Schoeberl et al [15]

affirms that it is possible to develop

applications in Java on resource constraint

devices. Some definitions of Java for embedded

and real-time systems do exist.

The paper [6] considers two frameworks

including Java 2D and Java Media Framework

(JMF) to control digital cameras. However,

when we have tried JMF to implement case

study 2, there are some errors in Linux.

Furthermore, as Java 2D and JMF are written in

only Java, they are not as effective and high

performance as using native code to access the

devices.

Another approach, Stephan Korsholm and

Philippe Jean describe a new way of integrating

Java with legacy code –Java Legacy Interface

(JLI) [13]. The paper [13] shows in some cases

such as (typically smaller) embedded platforms,

without room for a full JNI implementation, or

with scheduling mechanisms other than

threading, JNI cannot be used for integrating

Java with legacy code. JLI supports the

integration of Java with legacy platforms, and

JLI makes it possible to integrate types of

platforms where JNI cannot be used for this

integration. However, our solution for this

problem here is using RTSJ for real-time

aspect.

The report [14] proposes some techniques

for integrating native code, typically written in

C or C++, with Java code running on the PERC

virtual machine. This report suggests a number

of techniques one can use that can improve JNI

N.T.T. Trang et al. / VNU Journal of Science, Natural Sciences and Technology 24 (2008) 133-146

145

performance without sacrificing clean design. A

common pattern in JNI code is to copy a buffer

from a C function into a Java-accessible array

or data structure.

7. Conclusion and future work

Different lessons can be learned two

implemented case studies. JNI allows Java code

that runs inside a Java Virtual Machine to

interoperate with applications and libraries

written in other programming languages. We

can reuse effectively legacy code written in

languages such as C or C++ and the result

programs have both advantages of C/C++ and

Java. We have proposed the structure and the

process to develop embedded software.

In the structure we have proposed, upper

stream is platform portable while lower stream

is not. The lower stream written in C/C++ calls

the APIs to control the device. When the

platform is changed, these APIs are changed too

so we have to change the lower stream, but not

much. The proposed structure separates the

dependent and independent part of embedded

software and rejects the large part of platform

independence. Therefore, the embedded

software is partial platform portable.

In this paper, we have made some

comparisons in size of source code between

source programs written in C and our

implemented programs written in Java and JNI

based on the proposed structure and

development process of embedded software.

Size of source code of target implemented

programs is much smaller than source program

because of reusability of the upper stream

written in Java.

We also compare the used memory between

our implementations and other pure Java

application. Our implementations obviously use

less memory than others because of the

efficiency of C source code to control program

in lower stream of our structure.

One of the most important tasks in the

proposed process is the separation of the

Bottom APIs from C/C++ source code. In two

case studies, we have presented some solutions

to find out the Bottom APIs which are native

codes called by JNI.

In the future, we expect to do further

optimization of the process that is responsible

for translation from native code to the Java

application using some technical optimizing

performance of JNI. We also continue

researching embedded real-time systems with

RTSJ technology.

References

[1] Edward A. Lee, “Embedded Software”. In Advances

in Computers (M. Zelkowitz editor), Vol. 56,
Academic Press, London, 2002.

[2] Alberto Sangiovanni-Vincentelli, Grant Edmund
Martin, “A Vision for Embedded Software”. In

Proceedings of CASES 2001, Atlanta, Georgia,
November, 2001.

[3] Project Mackinac, “The Real-Time Java Platform”. A

Technical White Paper, Sun Microsystems, June
2004.

[4] Menno Lindwer, “Java in Embedded Systems”.
XOOTIC Magazine.

[5] Marius Gafen, “Java on Embedded Systems”. In

Real-Time Magazine 98- 1, 1998.
[6] Yves Vandewoude, David Urting, Kristof Pelckmans,

Yolande Berbers, “A Java-Interface to Digital
Cameras”. In Proceedings of Applied Informatics –

AI, 2002.
[7] Sheng Liang, “The Java Native Interface -

Programmer’s Guide and Specification”. The Java™

Serie, Addison-Wesley, 1999.

[8] William S. Beebee, Jr., Martin Rinard, “An
Implementation of Scoped Memory for Real-Time
Java”. Lecture Notes in Computer Science, 2001.

[9] http://www.libsdl.org, SDL Library homepage.
[10] http://xanim.polter.net, The XAnim homepage.
[11] http://linux-uvc.berlios.de, UVC driver.
[12] http://x11-basic.sourceforge.net/.
[13] Stephan Korsholm, Philippe Jean, “The Java

Legacy”. In Proceedings of the 5th international

N.T.T. Trang et al. / VNU Journal of Science, Natural Sciences and Technology 24 (2008) 133-146

146

workshop on Java technologies for real-time and

embedded systems, Vienna, Austria, 2007, p187.
[14] Best Practices for Native Code Integration with

PERC, February, 2003.
[15] Martin Schoeberl, “Restrictions of Java for

Embedded Real-time Systems”. In Proceedings of the

Seventh IEEE International Symposium on Object-

Oriented Real-Time Distributed Computing

(ISORC’04), May, (2004) 93.
[16] Joost Backus, “Java gets real for embedded SW

development”. Real-Time Magazine 99-3, 1999.

