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Abstract. Chip Firing Games on (directed) graph are widely used in theoretical computer science 

and many other sciences. In this model, chips are fired from one vertex to all of its neighbors at the 

same time. The purpose of our paper is to study an extended version of this model, the Conflicting 

Chip Firing Game, by considering that chips can be fired from one vertex to one of its neighbors at 

each time. Our main results are obtained when the support graph of this game is a rooted tree. In 

this case, we give the characterization of its reachable configurations and of its fixed points. 

Moreover we show the local lattice structure of its configuration space.  

Keywords: Chip Firing Game, conflicting game, convergence, discrete dynamical system, 

evolution rule, fixed point, tree. 

1. Introduction
*
 

A Chip Firing Game (CFG) [1,2] is defined 

on a directed (multi) graph as follows. A 

configuration of the game is a distribution of 

chips on the vertices of the graph, and the 

evolution rule (firing a vertex) is defined by: a 

configuration can be transformed into another 

one by transferringa chipfrom one vertex along 

each of its outgoing edges, if it contains at least 

as many chips as its outgoing degree. The set of 

all configurations reachable from the initial one 

is called configuration space, and a fixed point 

is a configuration from which the evolution rule 

can not be applied. Convergence conditions 

(involving the number of chips or the structure 
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of the graph) are given in [1-3] as well as 

different proofs of the fact that the 

configuration space of any convergent CFG is a 

lattice. See Figure 1 for an example.  

CFGs are widely used in theoretical 

computer science, in physics and in economics. 

For example, CFGs model distributed behaviors 

(such as dynamical distribution of jobs over a 

network [4,5]), combinatorial objects (such as 

integer partitions [6-9], dollar game [10,11] and 

other [12]). In physics, it is mainly studied as a 

paradigm for the so called Self Organized 

Criticality, an important area of research [13-

15]. It is also proved in [16] that infinite CFGs 

are Turing complete, which shows the potential 

complexity of their behaviors.  
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Fig. 1. The configuration space of a CFG with 9 chips. The weight of each vertex is indicated, and the shaded 

vertices are the ones which can be fired.  

 

We observe that in CFGs, the condition for 

firing a vertex is quite strict: this vertex must 

contain at least as many chips as its outgoing 

degree. However, in many model, for example 

models in distributed systems [5] or in 

economics [11], chips can be fired from a 

vertex to one of its neighbors if this vertex has 

at least one chip. And in this case, chips are not 

transferring to all neighbors of this vertex at the 

same time, but at different times. In order to 

modelize these systems, we investigate an 

extended version of CFG, by considering that a 

configuration can be transformed into another 

one by transferring chips from one vertex along 

one of its outgoing edges. However, the firing 

of a chip along one edge may cause a conflict 

with the one along another edge. Hence we call 

our model “Conflicting Chip Firing Game” 

(CCFG).  

Further, we constate that, in this new 

model, by relaxing the condition about the 

number of chips in a vertex, the evolution rule 

is much more flexible. In other side, the 

obtained configuration space has not the lattice 

structure, and the convergence properties. This 

situation is illustrated at the end of Section 2. 

Moreover, we note that it is more difficult to 

find a support graph which has good properties 

in CCFG model than in CFG model. 

In Section 3, we consider a particular but 

important case of CCFGs, where the support 

graph is a rooted tree. We characterize the 

reachable configurations and fixed points of the 

model. At the end, we study the complexity as 

well as the local lattice structure of the 

configuration space.  

Before entering in the core of this paper, 

letus give here some preliminary notations of 

order and lattice theory. A binary relation ≤ 

over a set P is said to be an order if it is 

reflexive, transitive and anti-symmetric. The set 

P together with the relation ≤ is then called a 

partially ordered set, or simply a poset. A poset 

L is a lattice if any two elements x and y of L 

have a greatest lower bound, called the infimum 

of x and y and denoted by inf(x, y), anda 

smallest greater bound, called the supremum of 

x and y and denoted by sup(x, y). The study of 

lattices is an important part of order theory, and 

many results about them exist. In particular, 

various classes of lattices have been defined and 

appear in computer science, mathematics, 

physics, social sciences, and others. For more 

details about orders and lattices, we refer to 

[17].  
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2. The general model conflicting chip firing 

games  

In this section after giving the definition of 

the model Conflicting Chip Firing Games 

(CCFG), we investigate the relation between its 

configurations.  

Let G = (V, E, c) be a (weighted) directed 

graph where V = {1,2,...,m} being the set of 

vertices of G, E = {t1,t2,...,tp}⊂ V × V being the 

set of edges of G, and the capacity function c 

being a function from E to N. A CCFG on G = 

(V, E, c) (G is called the support or the base of 

the game) with n chips is defined as follows. A 

configuration a = (a1, a2,..., am) of the game is a 

distribution of n chips into V, where the weight 

ai associated with each vertex i can be regarded 

as the number of chips stored at the vertex i. 

The evolution rule, called also transition rule or 

firing rule is the following: an edge (i, j) can be 

fired if the vertex i contains at least c(i, j) chips, 

and the firing of this edge is the transferring of 

c(i, j) chips from vertex i to vertex j. Moreover, 

a firing sequence is a sequence of firings.  

Let G be a support graph, and let O be a 

configuration, we call configuration space, and 

we denote by CCFG(G,O), the set of all 

configurations reachable from the initial 

configuration O. On this set, we define the 

following relation: a ≥ b if b can be obtained 

from a by applying a sequence of firings.  

In order to describe the evolution of a 

CCFG on graph G, we introduce the evolution 

matrix M(G) as follows: M(G) = (aqi)p x m where 

aqi = c(tq) (resp. aqi= -c(tq)) if i is the going out 

(resp. going in) vertex of edge tq, and aqi = 0 

otherwise. Denote by e[q] the unit p-parts 

vector, where the position q is equal to 1, and 

the others are equal to 0. We constate that if 

configuration b is obtained from configuration a 

by firing edge tq then b = a+ e[q] × M. Further, 

let ( )
rii ttC ,...,

1
=  be a firing sequence from a 

to b where the edges 
qii tt ,...,

1
are subsequently 

fired. We define the shot vector of C being the 

vector k(C) = (k1,...,kp) where kq is the number 

of occurrences of tq in C. The following result is 

direct from the above definitions:  

Proposition 1: Let C be a firing sequence 

from a to b, then we have: b= a+ k(C)× M(G).  

Let us give in Figure 2 a small example of 

this game. From this figure, we see that 

configuration (1, 2, 6) is obtained from (3, 4, 2) 

by the sequence C = t1t2t3t4t1t2t3t4. So the shot 

vector of C is (2, 2, 2, 2).  

Moreover, from this small example, we can 

observe that in constrat with the case of the 

classical CFG, a CCFG may have cycles (firing 

sequences come from a configuration and come 

back to itself) and have many fixed points. 

Therefore, it has not a lattice structure. 

However, in some cases where the support 

graph has some “good” properties, this structure 

is maintained. In the next section, we study 

such a particular (and important) class of 

CCFG. 

3. CCFG on a tree  

The purpose of this section is to investigate a 

class of CCFG whose the support graph is a 

rooted tree with edges directed from nodes to 

their children. We show a characterization for 

reachable configurations and for fixed points of 

this game. This allows us to describe the 

complexity of the game by giving the 

cardinality of its configuration space. We also 

prove the local lattice structure of this space. 
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Fig. 2. Some configurations of a CCFG with 9 chips.  

First of all, we present here some 

preliminary definitions.  

Definition 1: Let T = (V, E) be a rooted 

tree with V = {1, ... , n}, a node is a vertex of 

T, a leaf is a node having no child, and the 

depth of a node v, denoted by d(v), is the 

length of the unique path from the root to v. 

Definition 2: Let n be a positive integer 

and let S be a set with |S| = k. A composition 

of n into S is an ordered sequence (a1, a2, ..., 

ak) of non negative integers such that a1 + a2 + 

... + ak = n. The integer ai is called the weight 

of i. 

Next, we define for each composition a of 

n into V, the horizontal energy as follows: 

Definition 3: Let T = (V, E) be a rooted 

tree and let a = (a1, ..., am) be a composition of 

n into V. The horizontal energy eH(i, a) at node 

i of a is the quality aid(i). And the horizontal 

energy of a is the quality  

( ) ( )H Hi V
e a e i,a

∈
=∑ . 

Now, the CCFG on T with n chips, 

denoted by CCFG(T,n), is defined as follows: 

• Each configuration is a composition of n 

into V; 

• In the initial configuration O, all n chips 

are centered at the root, and there is no chip 

at other nodes; 

• Evolution rule: the node i can give one chip 

to the node j, one of its children, if i has at 

least one chip. 

We denote also the configuration space of 

this game by CCFG(T, n), and we write b ≤ a 

if b can be obtained from a by a firing 

sequence. In particular, we write a → b if b is 

obtained from a by applying once evolution 

rule. It is clear that eH(b) = eH(a) – 1. This 

implies the following result. 

Lemma 1: The configuration space 

CCFG(T, n) has no cycle and consequently it 

is stationary. Moreover, the set CCFG(T, n) 

equipped with the relation ≤ is a poset. 

Figure 3 shows an example of a CCFG on 

a tree of 5 nodes with 2 chips. 

In the next propositions, we give a 

characterization of configurations of 

CCFG(T,n) as well as its fixed points. 
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Fig. 3. The configuration space of a CCFG on tree. 

Proposition 2: The set CCFG(T,n) is 

exactly the set of compositions of n into V. 

Consequently, CCFG(T,n) has exactly 
1

1

n m

m

 + −     − 
 configurations.  

Proof: Let a = (a1,a2,... ,am) be a 

composition of n into V. It is clear that if eH(a) 

= 0 then a have no chips at any node but the 

root of T, that means a is nothing but O. In the 

case eH(a) > 0, we prove that there exists a 

firing sequence from the initial configuration O 

to a. For that, it is sufficient to show that there 

exists a composition a’ of n into V such that a’ 

→ a and eH(a’) < eH(a). Because eH(a) > 0, 

there exists a node i such that ai > 0. Let j be the 

father of i. We consider the composition a’ 

obtained form a by increasing aj by 1 and by 

decreasing ai by 1. It is easy to check that a’ is a 

composition of n into V satisfying a’→ a and 

eH(a’) = eH(a) - 1.  

This result implies that the number of 

configurations of CCFG(T,n) is the number of 

non-negative integer solutions of the equation 

x1 + x2 + … + xm = n. Hence it is 1

1

n m

m

 + −     − 
. 

The proof is completed.  

Then the following result is straightforward:  

Corollary 1: The fixed points of CCFG(T,n) 

are compositions of n into the set of leaves of T. 

Consequently, the number of fixed points of 

CCFG (T,n) is 1

1

n l

l

 + −     − 
, where l is the number 

of leaves of T. 

In the previous section, while studying the 

general model CCFG, we show a necessary 

condition by shot vector for two configurations 

to be comparable. However, we have not yet 

given any sufficient condition for this. In 

constrat, withthe support graph beinga tree, we 

can describe explicitely the order between 

configurations by introducing the following 

notation of vertical energy.  

Definition 4: Let T = (V, E) be a rooted tree 

and let a = (a1,...,am) be a composition of n into 

V. The vertical energy eV(i,a) at node i of a is 

equal to the number of chips in the subtree of T 
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rooted at i. And the vertical energy of a is the 

quality ( ) ( )V Vi V
e a e i,a

∈
=∑ . 

We observe that eV(a) = eH(a). Moreover, if 

the node i has children i1, i2,... ,ik then eV(i,a)= 

eV(i1, a) + eV(i2, a) + … + eV(ik, a) + ai. 

Therefore, each configuration is determined 

uniquely by their vertical energies at all nodes 

of the support tree.  

We can now state our result on the order of 

CCFG on tree: 

Theorem 1: Let a and b be two 

configurations of CCFG(T, n). Then a ≥ b in 

CCFG(T, n) if and only if eV(i, a) ≤ eV(i, b) for 

all nodes i of T.  

Proof: First, we prove the necessary 

condition. It is sufficient to prove the statement 

for the case a → b. Assume that b is obtained a 

by transferring one chip from node i to j. Then 

al = bl for all l ≠ i, j. Let k be a node of T. If k ≠ 

j, then the subtree of T rooted at k contains 

either both i, j or none of them. So eV(k, a) = 

eV(k, b). If k = j, then eV(j, a) = eV(j, b)- 1. 

Therefore, eV(k, a) ≤  eV(k, b) for all nodes k 

 of T.  

Conversely, we prove the sufficient 

condition for showing that there exists a firing 

sequence from a to b. It is clear that if eV(i, a) = 

eV(i, b) for all nodes i then a = b. For other 

cases, we remark that there exists a node i such 

that eV (i, a) < eV(i, b) and eV(k, a) = eV(k, b) for 

all nodes tk of the subtree rooted at t. This 

implies that ai < bi. Let j be the father of i. Let c 

be the composition of n into V obtained from b 

by increasing bj by 1 and by decreasing bi by 1. 

It is easy to see that c → b. So, by using the 

necessary condition, we have eV(i, c) = eV(i, b) 

– 1 and eV(k, c)= eV(k, b) for all nodes k ≠ i. 

Hence, eV(k, c) ≥ eV(k, a) for all nodes k of T. So 

by recurrence we also obtain an inverse firing 

sequence from b back to a. This completes the 

proof.  

To finish this section, we investigate the 

structure of CCFG on tree. Let us recall that, in 

the classical model CFG, the configuration 

space has a lattice structure with a unique fixed 

point. Unfortunately, in the general CCFG, 

there are many fixed points in the configuration 

space and the structure of this space is quite 

complicate. Nervertheless, in the case the 

support of a CCFG is a rooted tree, we can 

prove the local lattice structure. Let us first 

recall that for any two elements a ≥ b in a poset, 

the interval [b,a] is the set of all elements c 

suchthat a ≤ c ≤ b.  

Theorem 2: Let a ≥ b be two configurations 

of CCFG(T,n). Then the interval [b,a] is a 

graded lattice.  

Proof: Since the interval [b,a] has a mimimal 

element b, to prove its lattice structure it is 

sufficient to prove that for any two elements c,d 

∈ [b,a], there exists sup(c,d) (see [17]). To find 

this supremum, we first compute its vertical 

energies as follows. Put ei = min{eV(i,c), 

eV(i,d)} for every node i of V. It is clear that e1= 

n. In addition, if i has children i1, i2,...,ik, then 

kiii eee +++ ...
21  

( ) ( ){ } ( ) ( ){ }dikeciediecie
VkVtVtV

,,,min...,,,min ++=  

( ) ( ) ( ) ( ){ }diedieciecie
kVVkVV
,...,,,...,min

11
++++≤  

( ) ( ){ } iVV ediecie =≤ ,,,min . 

Now, let us define the following sequence 

of non-negative integers: g = (g1,g2,...,gm) 

where ( )
kiiiii ggggg +++−= ...

21
. It is 

clear that this sequence is a composition of n 

into V, that means g is a configuration of T. 

Furthermore, g has vertical energies e1, e2,..., 

em. So by using Theorem 1, we have g ≥ c and g 

≥ d. On the other hand, let h be a configuration 

of CCFG(T,n) satisfying h ≥ c,d. We have eV(i, 

h) ≤ eV(i, c) and eV(i, h) ≤ eV(i, d) for all nodes i 

of T, this implies that eV(i, h) ≤ 
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min{eV(i,c),eV(i,d)}= eV(i,g). Hence g ≤ h. This 

proves that g is the supremum of c and d.  

Finally, we remark that the horizontal 

energy is reduced by exactly 1after once 

applying the evolution rule. So the lattice [b,a] 

is graded.  

The following corollary is straightforward 

from the graded propertyn of the lattice. 

Corollary 2: In the CCFG(T,n) we have:  

i) The maximal length of a firing sequence from 
the initial configuration to one fixed point is 

{ })(max. idn
Ti∈

. 

ii) The minimal length of a firing sequence 

from the initial configuration to one fixed point 

is { })(min. idn
Ti∈

. 
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