
VNU Journal of Science, Natural Sciences and Technology 24 (2008) 92-102

92

Checking the conformability in CORBA component model

specifications

Tran Thi Mai Thuong*, Vo Van Thanh, Truong Ninh Thuan

 College of Technology, VNU, 144 Xuan Thuy Road, Cau Giay District, Hanoi, Vietnam

Received 31 October 2007

Abstract. We proposed in this paper an approach for checking the conformability in CORBA

component model specifications. In software engineering, it is demonstrated that discovering bugs

in earlier phases is much more economical than later phases. We focused thus on verifying

components by their ports specification. In order to do this, firstly we determined constraints on

kinds of port as well as on types of port which the connection between ports must satisfy, and then

formalized them to be able to prove automatically using formal prover tools. Here, we proposed to

use the B method for verifying components in a CCM specification.

1. Introduction
*

The enormous expansion in the use of

software in every field of life make demands on

installing and developing reusable, robust,

reliable, flexible, adaptive software systems

much accelerating. As these demands are

growing stronger, the complexity of processes

that software manages is increasing along with

the demand for the integration of processes

from different areas. As a consequence,

software programs are becoming increasingly

large and complex. The appearance of

component based software engineering (CBSE)

adapts this challenge of the software

development; it proposes an easy and efficient

method for developing large software.

In this approach, the architecture of a

system is described as a collection of

* Corresponding author. E-mail: thuongttm@vnu.edu.vn

components (reusable parts) along with the

interactions among those via their ports. The

main feature of CBSE is to allow the

construction of an application using

independently developed software components,

leading to reduce development costs and

improved software quality. In this process, it is

essential to ensure that individual components

can in fact interoperate together in the system.

However the components do not interact

seamlessly. Problems could arise in the system

if there are mismatches and inadequacies of

connected points between components. It is

important to verify the correctness of

component composition. In order to do it, there

are many approaches appeared to verify the

compatibility between components by

interfaces [1,2], behaviour specification [3],

models [4]...

As we know, however, CBSE is also an

approach to develop software systems, hence

T.T.M. Thuong et al. / VNU Journal of Science, Natural Sciences and Technology 24 (2008) 92-102 93

discovering bugs in the earlier phases will

reduce much time and effort in building

software systems, especially large systems. So,

in this paper, we propose an approach to verify

the conformability between components

through specifications of their ports. This is a

buffer step before verifying behaviour

specifications of components, because it will

remove many unneccesary cases which are

inputs for checking behaviours.

Here, we use the CORBA Component

Model (CCM) ports. Firstly, CCM specification

of components is described by XML. We then

determine the conditions such that ports can be

connectable. From the XML desciption and

these constraints, we finally build a B abstract

machine which can be used to check the

consistency of connected ports in the model.

The B method [5] is used to verify the

compatibility between ports. Because, the B

notations are based on set theory, generalised

substitutions and first order logic, these are

easily to describe ports and their relation. In

addition, the proof obligations for B

specifications are generated automatically by

support tools like AtelierB [6], B-Toolkit [7]

and B4free [8]. Checking proof obligations with

B support tools is automatically perfomed.

In the following, we present an overview of

components specifying approaches. We then

describe our method in Section 3 and illustrate

it with the case study of the Stock Quoter

System. In Section 4, we discuss related work.

The paper finishes with some concluding

remarks in Section 5.

2. Specification of software components

Specification of software components is one

of the most important research challenges in

component-based software engineering. It

represents the first step towards true component

reuse as the component specification gives all

necessary information to the component user on

how/why the component can be (re) used.

A component is considered to be a black

box. Hence, interfaces are the only access

points to the component and the specification of

the component comes down to the specification

of the component interfaces.

Specification of the component interfaces in

the current component-based systems is done

by two levels:

• On the first level, syntactical level, there

are some specification models such as

JavaBeans [9], COM+ [10], CCM [11],

.NET [12], and the Open Service Gateway

Initiative (OSGI) [13]. At this level, The

component specification consists of

specification of provided and required

interfaces. Provided interfaces are the one

that contain operations that a component

provides to other components or to the

component user, while required interfaces

are the one that contain operations used by

the component.

• On the second level, semantic

specification, there are two representatives:

Unified Modeling Language (UML) and

the Object Constraint Language (OCL), in

which a component implements a set of

interfaces. Each interface consists of a set

of operations with associated pre and

postconditions, as well as component state

and invariants. Preconditions are assertions

that the component assumes to be fulfilled

before an operation is invoked, while

postconditions are assertions that the

component guarantees will hold just after

the operation has been invoked. An

invariant is a predicate over the interface’s

state that will always hold.

In this paper, we focus on verifying the

conformability between components by ports in

CCM (CORBA Component Models). The CCM

T.T.M. Thuong et al. / VNU Journal of Science, Natural Sciences and Technology 24 (2008) 92-102 94

is the most recent and complete component

specification from OMG [14]. It has been

designed on the basis of the accumulated

experience using CORBA service, JavaBeans,

and EJB. The major goal behind the CCM

specification is to provide solution to the

complexity reached by CORBA and its

services. One of the advantages of CCM is its

effort to integrate many of the facets involved

in software engineering. As a consequence, a

software application is described in different

formalisms along two dimensions: the time

dimension (the life cycle, from design to

deployment) and the abstract dimension (from

abstractions to implementation). Altogether,

this makes a rather complex specification.

CCM simply defines the concept of

connection as an object reference; thus CCM,

like all other industrial component models, does

not provide a connector concept. Nevertheless,

components are connected by linking facets to

receptacles and event sources to event sinks.

Connections are binaries and oriented, but the

same port can handle multiple connections.

Connections can be explicitly described (in the

assembly descriptor, an XML file) and

established by the CCM framework at

initialization.

Components support a variety of surface

features through which clients and other

elements of an application environment may

interact with a component. These surface

features are called ports. The component model

supports four basic kinds of ports [15] (see

Figure 1):

CORBA component interface Ports

Fig. 1. CORBA component interface and its ports.

• Facets, which are distinct named interfaces

provided by the component for client

interaction.

• Receptacles, which are named connection

points that describe the component’s ability

to use a reference supplied by some external

agent.

• Event sources, which are named connection

points that emit events of a specified type to

one or more interested event consumers, or

to an event channel.

• Event sinks, which are named connection

points into which events of a specified type

may be pushed.

Basic components are not allowed to offer

facets, receptacles, event sources and sinks.

They may only offer attributes. Extended

components may offer any type of port.

3. Case study: Stock Quoter System

To demonstrate our approach, we use a case

study of the Stock Quoter System
1
 with two

components connected by their ports. However,

our approach will work with more complex

systems in which there are many connected

components. According to this approach, we

1 http://www.ddj.com/cpp/184403889

Attribute

Event source

Event sink

Receptacle

Facet

T.T.M. Thuong et al. / VNU Journal of Science, Natural Sciences and Technology 24 (2008) 92-102 95

firstly transform CCM specification of

components into XML format. We then express

XML description and constraints which we

defined above as inputs of B abstract machine.

Finally, we use an automatic proof tool to check

the consistency of connected ports in the model

with B abstract machine.

Figure 2 illustrates the components in stock

quoter system example using the CORBA

Component Model (CCM). The

StockDistributor component monitors a real-

time stock database. When the values of

particular stocks change, it pushes a CCM

eventtype that contains the stock’s name via a

CCM event source to the corresponding CCM

event sink implemented by one or more

StockBroker components. If these components

are interested in the stock they can obtain more

information about it by invoking a

request/response operation via their CCM

receptacle on a CCM facet exported by the

StockDistributor component.

notification_rate

 notifier_in

Stock notifier_out
Distributor Stock

 quoter_info_out Broker

 quoter_info_in

Fig. 2. CORBA component interface and its ports.

component StockBroker {

consumes StockName notifier_in;

uses StockQuoter quoter_info_in;

};

StockBroker contains two ports that

correspond to the following two roles it plays.

It’s a subscriber that consumes a

StockName eventtype called notifier_in that’s

published by the StockDistributor when the

value of a stock changes. As shown in Figure 2,

the notifier_in event sink will be connected to

the StockDistributor’s notifier_out event source

by the standard CCM deployment and

configuration tools when the application is

launched.

It uses the StockQuoter interface provided

by the StockDistributor component, which

reports additional information about a stock,

such as the high, low, and most recent trading

values of the stock during the day. The

dependency of StockBroker on StockQuoter is

indicated explicitly in IDL 3.x via the

quoter_info_in receptacle, which will be

connected to StockDistributor’s

quoter_info_out facade by the deployment and

configuration tools when the application is

launched.

We now present the implementation of the

StockDistributor component, whose ports are

shown here:

component StockDistributor

supports Trigger {

publishes StockName notifier_out;

provides StockQuoter

quoter_info_out;

attribute long notification_rate;

};

It publishes a StockName eventtype called

notifier_out that is pushed to the StockBroker

subscriber components when a stock value

T.T.M. Thuong et al. / VNU Journal of Science, Natural Sciences and Technology 24 (2008) 92-102 96

changes. In addition, it defines a StockQuoter

facet called quoter_info_out, which defines a

factory operation that returns object references

that StockBroker components can use to obtain

more information about a particular stock.

Finally, this component defines the

notification_rate attribute, which system

administrator applications can use to control the

rate at which the StockDistributor component

checks the stock quote database and pushes

changes to StockBroker subscribers.

We now consider the verification of

conformability between components when we

have information describing the connection

between ports of components from their CCM

specification in this system.

Recall that information in component

specification can be described by XML. XML

(Extensible Markup Language) [16] is a simple,

very flexible text format derived from SGML.

Originally designed to meet the challenges of

large scale electronic publishing, XML is also

playing an increasingly important role in the

exchange of a wide variety of data on the Web

and elsewhere.

XML can also use to define metamodel or

metadata of a system specification. With a

XML document described valid CORBA

system, it can provide an easy way to extract

information about components and its ports for

the verification purpose.

The ADL specification of the Stock Quoter

System presented in Figure 2 can be described

by XML as the following.

Note that, in a CCM specification, if a

receptacle’s uses declaration does not include

the optional multiple keyword, then only a

single connection to the receptacle may exist at

a given time. If a receptacle’s uses declaration

includes the optional multiple keyword, then

multiple connections to the receptacle may exist

simultaneously.

There are two categories of event sources,

emitters and publishers. Both are implemented

using event channels supplied by the container.

An emitter can be connected to at most one

proxy provider by the container. A publisher

can be connected through the channel to an

arbitrary number of consumers, who are said to

subscribe to the publisher event source. A

component may exhibit zero or more emitters

and publishers.

A publisher event source has the following

characteristics [11]:

• The equivalent operations for publishers

allow multiple subscribers (i.e., consumers)

to connect to the same source

simultaneously.

• Subscriptions to a publisher are delegated

to an event channel supplied by the

container at run time. The component is

guaranteed to be the only source publishing

to that event channel.

An emitter event source has the following

characteristics [11]:

• The equivalent operations for emitters allow

only one consumer to be connected to the

emitter at a time.

• The events pushed from an emitter are

delegated to an event channel supplied by the

container at run time. Other event sources,

however, may use the same channel.

As a consequence, CCM components can

be connected if their ports satisfy conditions:

PD1. Facet can connect only to receptacles

(provides port connect only to uses port)

PD2. Event source can connect only to event

sinks (We can say that publishes and emits

ports can connect only to consumes ports)

PD3. Each provides port (facet) can connect to

many uses ports (receptacles), each

publishes port can connect to many

consumes ports but not on the contrary.

T.T.M. Thuong et al. / VNU Journal of Science, Natural Sciences and Technology 24 (2008) 92-102 97

PD4. Each emits port connect only to one

consumes port.

PD5. With two connected ports, type of

provided ports (facets, event sources) is a

subtype of the one of required ports

(receptacles, event sinks).

3.1. Checking types of port in connections

Each component is described in a

component based model with two phases. The

first one is the type, represents the functional

interface of the component, what is visible by

other components. The second one is the

implementation, describes the contents of the

component.

The aim of separation of a component

description into a type and an implementation is

the point of view of the component. Describing

the type means specifying the component

interface, expressing how it is seen from an

external point of view. On the other hand, the

implementation represents the interior. In

practice, the description of the type and the

implementation may be done by different

persons, each of them dealing with one step in

the refinement of the architecture description,

from the top level to the detail level.

An inheritance mechanism exists to

describe the components. It may be used for

both the types and the implementations. This

mechanism is useful to refine a description by

overwritting an already existing component.

Restrictions exist, which must be respected.

Thus, a component type may inherit from

another component type of the same category.

In the same way, a component implementation

may inherit from another component

implementation of the same category.

The final condition of the compatibility

between ports (PD5) states that, type of

provided ports is a subtype of the one of

required ports. A verification shound be

considered to ensure the conformity between

the types and directions of the connected ports.

In order to verify conditions for connecting

ports in a CCM specification, we propose to use

the B method [5].

From the inheritance relationship between

types of ports, we create a simple B abstract

machine called Types machine (Figure 3). In

this machine, if an interface TYPE1 inherits

from an interface TYPE2, we define TYPE1 is

subtype of the TYPE2 (TYPE1 ⊆ TYPE2).

MACHINE Types

CONSTANTS

TYPE1, TYPE2, TYPE3...

PROPERTIES

TYPE1 ⊆ TYPE2; TYPE3 ⊆ TYPE2...

END

Fig. 3. Types abstract machine.

T.T.M. Thuong et al. / VNU Journal of Science, Natural Sciences and Technology 24 (2008) 92-102 98

From the Types machine, if we want to

check the consistency of the type between two

ports in a connection, we have to get the type of

required port (TYPE1) and the type of provided

port (TYPE2). Each time we get a connection,

we have to give a fragment specification as the

following into the B specification, according to

the definition of subtype:

ANY conn WHERE

conn ∈ TYPE2

THEN

conn : ∈ TYPE1

END

The B prover will check if TYPE2 is a

subtype of TYPE1 from this specification.

3.2. Checking kinds of port in connections

The B machine that we build to verify the

correctness of the ADL Acme specification [17]

is called the ConnectionCheck. From the XML

description, we can get all ports and the kind of

port (uses port, provides port, consumes

ports...) in the specification. They are presented

in the SETS clause of the machine.

We declare the variables connectionU_P to

contain and check the connection between uses

ports and provides ports, connectionC_P to

contain the connection between consumes ports

and publishes ports, connectionC_E to contain

the connection between consumes ports and

emits ports. These variables have to satisfy four

conditions (PD1, PD2, PD3, PD4) described in

the above. These constraints can be formally

described in the INVARIANTS clause as the

following:

connectionU_P∈USESPORT 7→PROVIDESPORT^

connectionC_E∈CONSUMESPORT→EMITSPORT^

connectionC_P∈CONSUMESPORT7→PUBLISHESPORT

In these constraints, type of these three

variable define the type of a possible

connections in the specification.

We use the partial function () to denote

the relation between the domain and the range

of the connection between uses port and

provides ports; consumes port and publishes

port. It means that, one element of the domain

cannot connect to have more than one element

of the range and one element of the range can

connect to many elements of the domain

(Figure 4). We use the partial bijection () to

denote the relation between consumes port and

emits port. It means that each element of the

domain can connect only to one element of the

range.

 Y

X

 a

 1

2 d

 3 b

 4 c

Fig. 4. Relations in a partial function.

T.T.M. Thuong et al. / VNU Journal of Science, Natural Sciences and Technology 24 (2008) 92-102 99

In the OPERATIONS clause of the

machine, we define operations for extracting all

connections in the CCM specification. In these

operations, we intergrate the fragment

specification of checking types between ports of

the connection. The machine presented in

Figure 5 illustrates the B notations of the

verification purpose for the case study of the

Stock Quoter System in Figure 2. It is to be

noted that, all information in this abstract

machine can be extracted from the XML

description hence it can be built automatically.

4. Related work

Several proposals for verifying the

interoperability between components have been

made.

The paper [4] present a tool called Cadena,

an integrated environment for building and

modeling CCM systems. Cadena provides

facilities for defining component types using

CCM IDL, specifying dependency information

and transition system semantics for these types,

assembling systems from CCM components,

visualizing various dependence relationships

between components, specifying and verifying

correctness properties of models of CCM

systems derived from CCM IDL, component

assembly information, and Cadena

specifications, and producing CORBA stubs

and skeletons implemented in Java.

As a point of comparison, this paper

generated a DSpin model for the scenario that

check the number of timeouts issued in a

system execution.

Zaremski and Wing [18] propose an

approach to compare two software components.

They determine whether one required

component can be substituted by another one.

They use formal specifications to model the

behavior of components and exploit the Larch

prover to verify the specification matching of

components

MACHINE ConnectionCheck

SEES Types

SETS

USESPORT = {quoter_info_in};
PROVIDESPORT = {quoter_info_out};

CONSUMESPORT = {notifier_in};

PUBLISHESPORTS = {notifier_out}; EMITSPORTS;

VARIABLES

connectionU_P, connectionC_P, connectionC_E

INVARIANTS

ConnectionU_P ∈

USESPORT →PROVIDESPORT ∧

ConnectionC_P ∈

CONSUMESPORT →PUBLISHESPORT ∧

ConnectionC_E ∈
CONSUMESPORT → EMITSPORT

INITIALISATION

ConnectionU_P := ∅ ||

connectionC_P := ∅ || connectionC_E := ∅
OPERATIONS

GetConnectionU_P =

PRE

ConnectionU_P USESPORT →PROVIDESPORT

T.T.M. Thuong et al. / VNU Journal of Science, Natural Sciences and Technology 24 (2008) 92-102 100

THEN

ConnectionU_P :=

connectionU_P ∪{notifier_in →notifier_out} ||
ANY conn WHERE /* Check type of ports */

conn STOCKNAME /* type of provides port */

THEN

conn : ∈ STOCKNAME /* type of uses port */
END

END;

getConnectionC_P =

PRE

connectionC_P ∈
CONSUMESPORT →PUBLISHESPORT

THEN

connectionC_P := connectionC_P ∪
{quoter_info_in →quoter_info_out} ||

ANY conn WHERE /* Check type of ports */

conn ∈ STOCKQUOTER /* type of publishes port */
THEN

conn : ∈ STOCKQUOTER /* type of consumes port */
END

END;

getConnectionC_E =

PRE

connectionC_E ∈ CONSUMESPORT → EMITSPORT
THEN

connectionC_E := connectionC_E ∪ ∅…
END

END

Fig. 5. B abstract machine for verifying compatibility between component ports.

In [1,2], protocols are specified using a

temporal logic based approach, which leads to a

rich specification for component interfaces.

Henzinger and Alfaro [19] propose an approach

allowing the verification of interfaces

interoperability based on automata and game

theories: this approach is well suited for

checking the interface compatibility at the

protocol level.

The paper [3] proposes the Port State

Machine (PoSM) to model the communication

on a Port. Building on their experience with

behavior protocols, they model an operation

call as two atomic events request and response,

permitting PoSM to capture the interleaving

and nesting of operation calls on provided and

required interfaces of the Port. The trace

semantics of PoSM yields a regular language.

They apply the compliance relation of behavior

protocols to PoSMs, allowing to reason on

behavior compliance of components in software

architectures.

Our work focuses on the verification of

interoperability of specification of components

through their ports. We determine the

conditions for the connection between ports and

use the B method for verifying their

compatibility.

T.T.M. Thuong et al. / VNU Journal of Science, Natural Sciences and Technology 24 (2008) 92-102 101

5. Conclusion

We have presented some aspects of

component specifications, outlined our

approach of components vefification based on

kinds of connectable ports, through proving the

correctness of their CCM specification using B

method. Concurrently, we also described more

detail the transformation from ports’ informal

connection constraints to formal formats to be

able to input into B machine for verifying. We

have presented a small but illustrative case

study, showing in particular kinds of ports

which can be connectable as well as the activity

machenism of B machine in proving the

soundness of CCM specification.

In previous work, we defined constraints on

ports, and thanks to these we can know which

components can connect together properly if

their ports satisfy requirements which we given.

At this degree, we have just only known kinds

of port (facet, receptacle, event source, event

sink) and only verified constraints on these

kinds of port. In this paper, we contributed to

verifying connection conditions on types of port

and integrating it into kinds of port to assist our

approach. This will support us much on

verifying the compatability between

components by behaviour specification at

semantic level.

In the future work, we will carry out to

check the composition between behaviors of

ports when connection between types of port is

correct. Since then, we will build a framework

supporting the process of installing, verifying

and developing component-based systems. This

leaves the opportunity for the designer to use

the tool best suited to the problem, and to

perform formal analysis on parts of the system

that particularly deserve it.

Acknowlegments. This work is partly

supported by the research project No. QC.07.04

granted by Vietnam National University, Hanoi.

References

[1] J. Han, “A comprehensive interface definition
framework for software components”, In Asia Pacific
software engineering conference, IEEE Computer

Society (1998) 110.

[2] J. Han, Temporal logic based specification of
component interaction protocols, In Proceedings of

the Second Workshop on Object Interoperability

ECOOP’2000, Springer-Verlag, (2000) 12.
[3] V. Mencl, “Specifying component behavior with port

state machines”, Electronic Notes in Theoretical
Computer Science, Special issue: Proceedings of the

Workshop on the Compositional Verification of UML

Models, 101C:129, 2004.
[4] J. H. et al. “Cadena: an integrated development,

analysis, and verification environment for
component-based systems”, In Proceedings of 25th

International Conference on Software Engineering,
(2003) 160.

[5] J.R. Abrial, The B-Book, Assigning Programs to

Meanings, Cambridge University Press, 1996.

[6] Steria, Obligations de preuve: Manuel de ref´erence .́
Steria - Technologies de l’information, version 3.0,
Available at http://www.atelierb.societe.com.

[7] B.C. Ltd. B-Toolkit User’s Manual, Oxford (UK),
1996, Release 3.2.

[8] Clearsy, B4free. Available at http://www.b4free.com,
2004.

[9] Sun Microsystems, JavaBeans 1.01 Specification,
http://java.sun.com/beans.

[10] G. Eddon, H. Eddon, Inside COM+ Base Services.
Microsoft Press, 2000.

[11] CORBA Component Model Specification, Version
4.0, http://www.omg.org/cgi-bin/doc?ptc/2006-05-01.

[12] Microsoft, .NET, http://www.microsoft.com/net/.
[13] OSGI, OSGI Service Gateway Specification, Release

1.0, http://www.osgi.org.
[14] http://www.omg.org.

[15] I. Crnkovic, M. Larsson. “Building reliable
componentbased Software Systems”, Artech House,
Inc, 2002.

[16] World Wide Web Consortium, XML,
http://www.w3c.org/XML/.

[17] Nguyen Hoang Ha, Tran Thi Mai Thuong, Truong
Ninh Thuan, Nguyen Viet Ha, “Verifying the
compatibility of components’ ports upon

specification”, In Japan Vietnam Workshop on

Software Engineering 2007, September 2007.
[18] A. M. Zaremski, J. M. Wing, “Specification matching

of software components” 6(4) (1997) 333.
[19] L. Alfaro, T.A. Henzinger, “Interface automata”, In

9th Annual Symposium on Foundations of Software

Engineering, ACM press, (2001) 109.

T.T.M. Thuong et al. / VNU Journal of Science, Natural Sciences and Technology 24 (2008) 92-102 102

ANNEX - XML specification for CMM Stock Quoter System.

<connections>

<?xml version="1.0" encoding="UTF-8"?> <Model>

...

<connectinterface> <usesport>

<usesidentifier>quoter_info_in</usesidentifier> <type>StockQuoter</type>
<componentinstantiationref idref="StockBroker"/>

</usesport> <providesport>

<providesidentifier>quoter_info_out</providesidentifier>
<type>StockQuoter</type> <componentinstantiationref
idref="StockDistributor"/>

</providesport> </connectinterface> <connectevent>

<consumesport> <consumesidentifier>notifier_in</consumesidentifier>
<type>StockName</type> <componentinstantiationref idref="StockBroker"/>

</consumesport> <publishesport>

<publishesidentifier>notifier_out</publishesidentifier>
<type>StockName</type> <componentinstantiationref
idref="StockDistributor"/>

</publishesport> </connectevent>

</Model>

...

</connections>

