

363.5
QUE
2005

Analytical Methods for Drinking Water

Advances in Sampling and Analysis

PHILIPPE QUEVAUILLER
European Commission, Brussels, Belgium

K. CLIVE THOMPSON
*ALcontrol Laboratories
South Yorkshire, UK*

AI HỌC QUỐC GIA HÀ NỘI
TRUNG TÂM THÔNG TIN THƯ VIỆN

AV-D1/ 001858

John Wiley & Sons, Ltd

Contents

Series Preface

xi

Preface

xiii

List of Contributors

xv

1 Drinking Water Regulations

1

*Pierre Hecq, Adriana Hulsmann, Fred S. Hauchman,
Jennifer L. McLain and Franz Schmitz*

1.1	EU Directive on Drinking Water – Past, Present and Future	3
1.1.1	EU Water Legislation	3
1.1.2	The Drinking Water Directives – Revision Processes	3
1.1.3	Main Aspects of the Drinking Water Directives	4
1.1.4	Revision of the DWD and WHO Guidelines	9
1.1.5	Conclusions	9
1.2	Drinking Water Regulations in the United States	10
1.2.1	Introduction	10
1.2.2	History of the Safe Drinking Water Act	10
1.2.3	Development of Regulations	11
1.2.4	Highlights of the Safe Drinking Water Act	12
1.2.5	Implementation of Regulations	15
1.2.6	Conclusions	16
1.3	Standardization	16
1.3.1	Introduction	16
1.3.2	Requirements to be met by Laboratories and Analytical Methods	17
1.3.3	Standardization in CEN TC 230 Water Analysis and ISO TC 147 Water Quality	17
1.3.4	Development of Standards in ISO/TC 147	19
1.3.5	Special Standards Development Procedures	23
1.3.6	Drafting of Standards	24
1.3.7	EU Requirements for Standard Methods	28
	References	35

2 Bromate Determination	39
<i>A.-Hakim R. Elwaer, Philippe Quevauviller, K. Clive Thompson and Cameron W. McLeod</i>	
2.1 Introduction	40
2.2 Ion Chromatographic Methods	41
2.2.1 Identification and Removal of the Main Interferences	41
2.2.2 Sample Pre-treatment Automation	43
2.3 Alternative Laboratory Methods	45
2.3.1 Ion Chromatography / ICP-MS	45
2.3.2 Ion Chromatography Spectrophotometry Detection	46
2.3.3 Ion Pair Chromatography – Fluorescence Detection	47
2.3.4 Flow Injection – ICP-MS	48
2.4 Field-based Methods	49
2.4.1 Spectrophotometric Method with Methylene Blue	49
2.4.2 Flow Injection – Spectrophotometric Detection	51
2.5 Stability of Bromate	51
2.5.1 Effect of Water Matrix on Bromate Stability	52
2.5.2 Stability of Bromate Species Immobilized on Alumina Microcolumns	53
2.6 Interlaboratory Excercise for Bromate Determination	55
2.7 Toxicity, Occurrence and Current Status of Bromate in Drinking Waters	59
References	61
3 Lead Monitoring	63
<i>Theo van den Hoven and Nellie Slaats</i>	
3.1 Factors Determining the Lead Concentration in Drinking Water	64
3.1.1 Sources of Lead in Drinking Water	64
3.1.2 Factors Determining the Lead Concentration in Drinking Water	65
3.2 Sampling of Lead in Drinking Water	68
3.2.1 Available Sampling Procedures	68
3.2.2 Definition of a 'Representative Sample'	69
3.2.3 Representative Sampling at an Individual Consumer's Tap	73
3.2.4 Lead Analyses in Tap Water	73
3.3 Comparison of Sampling Procedures in the Field	75
3.3.1 European Study	75
3.3.2 Applied Sampling Procedures	75
3.3.3 Characteristics of Test Areas	77
3.3.4 Applied Test Procedures	78
3.3.5 Performance Criteria of Sampling Protocols	79
3.3.6 Representativeness of the Tested Protocols	81
3.3.7 Reproducibility of the Tested Protocols	91
3.3.8 Costs, Practicality and Consumer Acceptance	95
3.3.9 Final Evaluation of Sampling Procedures	96
3.3.10 Experience with the Monitoring Protocol in France	98

3.4	Fit for Purpose Lead Monitoring Protocols	98
3.4.1	The Requirements for Sampling and Monitoring Lead in Accordance with the DWD 98/83/EC	98
3.4.2	Sampling and Monitoring Strategy	100
3.4.3	Lead Monitoring Purposes	101
3.5	Lead Levels in Drinking Water in Tap Water	109
3.5.1	Overview of Lead Levels in Test Areas	109
3.5.2	Effect of Water Composition	110
3.5.3	Effect of Plumbing Materials	111
3.5.4	Water Consumption	111
	References	112

4 Materials in Contact with Drinking Water

Jean Baron

4.1	Parameters Used for the Control of Materials Effects	116
4.1.1	Organoleptic Assessments	116
4.1.2	General Hygiene Assessments	117
4.1.3	Substances that Pose a Risk to Health	117
4.1.4	Enhancement of Microbial Growth	118
4.2	Test Procedure for Metallic Materials	118
4.2.1	Introduction	118
4.2.2	Metallic Materials	119
4.2.3	Experiments within Conormative Research	123
4.2.4	Discussion	148
4.2.5	Conclusions	155
4.3	Test Procedure for Cementitious Materials	156
4.3.1	Introduction	156
4.3.2	Technical Background	160
4.3.3	Effect of Preconditioning and Migration Water	161
4.3.4	Reproducibility Tests	169
4.3.5	Effect of Preconditioning at Different Ageing Times	170
4.3.6	Conclusions	171
	References and Bibliography	172

Index

175