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Abstract. Let X1, X2, ... be a sequence of independent, identically distributed(i.i.d)

random variables each taking values 0, 1, a with equal probability 1/3. Let µ be the

probability measure induced by S =
�∞

n=1 3
−nXn. Let α(s) (resp.α(s),α(s)) denote

the local dimension (resp. lower, upper local dimension) of s ∈ supp µ, and let

α = sup{α(s) : s ∈ supp µ};α = inf{α(s) : s ∈ supp µ}

E = {α : α(s) = α for some s ∈ supp µ}.
In the case a = 3, E = [2/3, 1], see [6]. It was hoped that this result holds true with

a = 3k, for any k ∈ N. We prove that it is not the case. In fact, our result shows
that for k = 2(a = 6),α = 1, α = 1 − log(1+

√
5)−log 2

2 log 3 ≈ 0.78099 and E = [1 −
log(1+

√
5)−log 2

2 log 3 , 1].

1. Introduction

LetX1, X2, ... be a sequence of i.i.d random variables each taking values a1, a2, ..., am
with probability p1, p2, ..., pm respectively. Then the sum

S =
∞3
n=1

ρnXn

is well defined for 0 < ρ < 1. Let µ be the probability measure induced by S, i.e.,

µ(A) = Prob{ω : S(ω) ∈ A}.

It is known that the measure µ is either purely singular or absolutely continuous. In 1996,

Lagarias and Wang[8] showed that if m is a prime number, p1 = p2 = ... = pm = 1/m and

a1, ..., am are integers then µ is absolutely if and only if {a1, a2, ..., am} forms a complete
system(modm), i.e., a1 ≡ 0 (mod m), a2 ≡ 1 (mod m), . . . , am ≡ m− 1 (mod m).

An intriguing case when m = 3, p1 = p2 = p3 =
1
3 and a1 = 0, a2 = 1, a3 = 3,

known as the ”(0, 1, 3)−Problem”, is of great interest and has been investigated since the
last decade.
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Let us recall that for s ∈ supp µ the local dimention α(s) of µ at s is defined by

α(s) = lim
h→0+

logµ(Bh(s))

log h
, (1)

provided that the limit exists, where Bh(s) denotes the ball centered at s with radius h. If

the limit (1) does not exist, we define the upper and lower local dimension, denoted α(s)

and α(s), by taking the upper and lower limits respectively.

Observe that the local dimension is a function defined in the supp µ. Denote

α = sup{α(s) : s ∈ supp µ} ; α = inf{α(s) : s ∈ supp µ};

and

E = {α : α(s) = α for some s ∈ supp µ}
be the attainable values of α(s), i.e., the range of α.

In [6], T. Hu, N. Nguyen and T. Wang have investigated the ”(0, 1, 3)- Problem”

and showed that E = [2/3, 1]. In this note we consider the following general problem.

Problem. Describle the local dimension for the (0, 1, a)- problem, where a ∈ N is a natural
number.

Note that the local dimension is an important characteristic of singular measures.

For a = 3k+2 the measure µ is absolutely continuous, therefore we only need to consider

the case a = 3k or a = 3k+1, k ∈ N. For a = 3k it is conjectured that the local dimension
is still the same as a = 3, it means that E = [2/3, 1]. Our aim in this note is to disprove

this conjecture. In fact, our result is the following:

Main Theorem. For a = 6 we have α = 1,α = 1 − log(1+
√
5)−log 2

2 log 3 and E = [1 −
log(1+

√
5)−log 2

2 log 3 , 1].

The proof of the Main Theorem will be given in Section 3. The next section we establish

some auxiliary results used in the proof of the Main Theorem.

2. Auxiliary Results

Let X1, X2, . . . be a sequence of i.i.d random variables each taking values 0, 1, 6

with equal probability 1/3. Let S =
�∞
n=1 3

−nXn, Sn =
�n

i=1 3
−iXi be the n-partial

sum of S, and let µ, µn be the probability measures induced by S, Sn respectively. For any

s =
�∞
n=1 3

−nxn ∈ supp µ, xn ∈ D: = {0, 1, 6}, let sn =
�n
i=1 3

−ixi be it’s n-partial sum.
It is easy to see that for any sn, s

I
n ∈ supp µn, |sn − sIn| = k3−n for some k ∈ N, and for

any interval between two consecutive points in supp µn there exists at least one point in

supp µn+1. Let

�snX = {(x1, x2, ..., xn) ∈ Dn :
n3
i=1

3−ixi = sn}.

Then we have

µn(sn) = #�snX3−n for every n, (2)

where #A denotes the cardinality of set A.
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Two sequences (x1, x2, ..., xn) and (x
I
1, x
I
2, ..., x

I
n) in D

n are said to be equivalent,

denoted by (x1, x2, . . . , xn) ≈ (xI1, xI2, . . . , xIn) if
�n

i=1 3
−ixi =

�n
i=1 3

−ixIi. Then we have

2.1.Claim. Assume that (x1, x2, . . . , xn) and (x
I
1, x
I
2, . . . , x

I
n) inD

n. If (x1, x2, . . . , xn) ≈
(xI1, xI2, . . . , xIn) and xn > xIn then xn = 6, xIn = 0.
Proof. Since (x1, x2, . . . , xn) ≈ (xI1, xI2, . . . , xIn), we have

3n−1(x1 − xI1) + 3n−2(x2 − xI2) + . . .+ 3(xn−1 − xIn−1) + xn − xIn = 0,

which implies xn−xIn ≡ 0 (mod 3), and by virtue of xn > xIn we have xn−xIn = 6. Hence
xn = 6, x

I
n = 0. The claim is proved.

Consequece 1. a) Let sn+1 ∈ supp µn+1 and sn+1 = sn + 1
3n+1 , sn ∈ supp µn. We have

#�sn+1X = #�snX for evrery n.

b) For any sn, s
I
n ∈ supp µn such that sn − sIn = 1

3n , we have

#�snX #�sInX.

Proof. Observe that a) is a directive consequence of Claim 2.1.

b) It is easy to see that if sn − sIn = 1
3n , then sn = sn−1 + 1

3n and s
I
n = sn−1 +

0
3n , where sn−1 ∈ supp µn−1. Therefore from a) it follows that

#�snX = #�sn−1X #�sInX.

Remark 1. Observe that from |sn−sIn| = k3−n, it follows that if sn+1 ∈ supp µn+1
and sn+1 = sn +

1
3n+1 then sn+1 can not be represented in the forms

sn+1 = s
I
n +

0

3n+1
, or sn+1 = s

II
n +

6

3n+1
,

where sn, s
I
n, s
II
n ∈ supp µn. Thus, for any sn+1 ∈ supp µn+1 has at most two representa-

tions throught points in supp µn.

2.2. Claim. Assume that sn, s
I
n ∈ supp µn, n ≥ 3. Then we have

a) If sn − sIn = 1
3n , then there are three following cases for the representation of

sn, s
I
n:

1. sn = sn−1 + 1
3n ; s

I
n = sn−1 +

0
3n ,

2. sn = sn−2 + 6
3n−1 +

1
3n ; s

I
n = s

I
n−2 +

1
3n−1 +

6
3n , or

3. sn = sn−2 + 0
3n−1 +

1
3n ; s

I
n = s

I
n−2 +

1
3n−1 +

6
3n ,

where sn−1 ∈ supp µn−1 and sn−2, sIn−2 ∈ supp µn−2.
b) If sn−sIn = 2

3n then there are four following cases for the representation of sn, s
I
n:

1. sn = sn−2 + 0
3n−1 +

6
3n ; s

I
n = s

I
n−2 +

1
3n−1 +

1
3n ,

2. sn = sn−2 + 1
3n−1 +

0
3n ; s

I
n = s

I
n−2 +

0
3n−1 +

1
3n ,

3. sn = sn−2 + 6
3n−1 +

6
3n ; s

I
n = s

I
n−2 +

1
3n−1 +

1
3n , or

4. sn = sn−2 + 1
3n−1 +

0
3n ; s

I
n = s

I
n−2 +

6
3n−1 +

1
3n ,
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where sn−1 ∈ supp µn−1 and sn−2, sIn−2 ∈ supp µn−2.
Proof. Let sn =

�n
i=1 3

−ixi and sIn =
�n
i=1 3

−ixIi, xi, x
I
i ∈ D.

a) If sn−sIn = 1
3n then 3

n−1(x1−xI1)+3n−2(x2−xI2)+. . .+3(xn−1−xIn−1)+xn−xIn =
1, which implies sn − sIn ≡ 1 (mod 3), hence xn − xIn = 1 or xn − xIn = −5.

For xn − xIn = 1 we have xn = 1, xIn = 0. This is the case 1.a.
For xn − xIn = −5 we have xn = 1, xIn = 6 and

3n−2(x1 − xI1) + . . .+ 3(xn−2 − xIn−2) + xn−1 − xIn−1 = 2,

which implies sn−1 − sIn−1 ≡ 2 (mod 3), hence xn−1 − xIn−1 = 5 (xn−1 = 6, xIn−1 = 1) or
xn−1 − xIn−1 = −1 (xn−1 = 0, xIn−1 = 1) are the cases 2.a, 3.a respectively.

b) The proof is similar to a).

Consequence 2. Let sn < sIn < sIIn be three arbitrary consecutive points in suppµn.
Then either sIn − sn or sIIn − sIn is not 1

3n .

The following fact provides a useful formula for calculating the local dimention.

2.3. Proposition. For s ∈ supp µ, we have

α(s) = lim
n→∞

| logµn(sn)|
n log 3

,

provided that the limit exists. Otherwise, by taking the upper and lower limits respectively

we get the formulas for α(s) and α(s).

We first prove:

2.4. Lemma. For any two consecutive points sn and s
I
n in supp µn we have

µn(sn)

µn(sIn)
n.

Proof. By (2) it is sufficient to show that #�snX
#�sInX n. We will prove the inequality by

induction. Clearly the inequality holds for n = 1. Suppose that it is true for all n k.

Let sk+1 > s
I
k+1 be two arbitrary consecutive points in supp µn+1. Write

sk+1 = sk +
xk+1
3k+1

, sk ∈ supp µk, xk+1 ∈ D.

We consider the following cases for xk+1:

Case 1. xk+1 = 6. sk+1 = sk +
6

3k+1
= sk +

2
3k
. Let sIk ∈ supp µk be the smallest value

larger than sk.

1.a) If sIk = sk +
1
3k
then sIk+1 = sIk +

1
3k+1

, hence by Consequence 1.a, we have

#�sIk+1X = #�sIkX. Note that if sk+1 has a other representation, sIk+1 = sIIk +
0

3k+1
, sIIk ∈

supp µk, then sk and s
II
k are two consecutive points in supp µk and sk < sIk < sIIk , a

contradiction. It follows that #�sk+1X = #�skX. Therefore
#�sk+1X
#�sIk+1X

=
#�skX
#�sIkX

k < k + 1.
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1.b) If sIk ≥ sk + 2
3k
= sk+1. So sk+1 has at most two representations through sk

and sIk( sk+1 = sk +
6

3k+1
and sk+1 = s

I
k +

0
3k+1

). It follows that

#�sk+1X #�skX+#�sIkX.

Since sk < sk +
1

3k+1
< sk+1 sIk, s

I
k+1 ∈ (sk, sk+1). On the other hand sk, sIk are two

consecutive points in supp µk, so s
I
k+1 /∈ supp µk. It follows that

If sIIk +
6

3k+1
< sk +

1
3k+1

for sIIk ∈ supp µk with sIIk < sk then sIk+1 = sk + 1
3k+1

. Therefore

#�sk+1X
#�sIk+1X

#�skX+#�sIkX
#�skX k + 1.

If there exists sIIk ∈ supp µk such that sk + 1
3k+1

< sIIk +
6

3k+1
< sk+1(s

II
k < sk) then

sIk+1 = sIIk +
6

3k+1
and 0 < sk − sIIk < 5

3k+1
< 2

3k
, so sk = sIIk +

1
3k
. By Consequece1.b),

#�sIk+1X = #�sIIkX ≥ #�skX. Therefore

#�sk+1X
#�sIk+1X

#�skX+#�sIkX
#�skX k + 1.

Case 2. xk+1 = 1. sk+1 = sk+
1

3k+1
. Then sIk+1 = sk+

0
3k+1

. If there exists sIk ∈ supp µk
such that sIk+1 = sIk +

6
3k+1

then sIk, sk are two consecutive points in supp µk(because
sk − sIk = 2/3k). Therefore

#�sIk+1X
#�sk+1X =

#�sIk+1X
#�skX

#�skX+#�sIkX
#�skX k + 1.

Case 3. xk+1 = 0. sk+1 = sk +
0

3k+1
. Note that if sk+1 has other representation,

sk+1 = s
I
k +

6
3k+1

then it was considered in the Case 1. So we may suppose that

sk+1 W= sk + 6

3k+1
for all sk ∈ supp µk. (3)

Then we have #�sk+1X = #�skX. Write

sIk+1 = s
I
k +

xIk+1
3k+1

, xIk+1 ∈ D.

Since sk+1 = sk +
0

3k+1
∈ supp µk and xIk+1 W= 0, xIk+1 = 1 or xIk+1 = 6. Which implies

#�sIk+1X = #�sIkX. We claim that sk and s
I
k are two consecutive points in supp µk.

In fact, if there exists sIIk ∈ supp µk such that sIk < sIIk < sk = sk+1, then

sIk+1 = s
I
k +

6

3k+1
(4)

(If it is not the case, sIk+1 = sIk +
1

3k+1
< sIIk < sk = sk+1, then s

I
k+1 and sk+1 are not

consecutive).
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Since sIk+1 and sk+1 are two consecutive points, s
II
k < s

I
k+1 = s

I
k +

6
3k+1

= sIk +
2
3k
,

hence

sIIk = s
I
k +

1

3k
. (5)

From Consequence 2 and (3),

sIIk +
6

3k+1
= sIIk +

2

3k
< sk = sk+1. (6)

From (4), (5) and (6) we get sIk+1 = s
I
k +

6
3k+1

= sIk +
2
3k
= sIIk +

1
3k
< sIIk +

6
3k+1

<

sk = sk+1, a contradiction to s
I
k+1 and sk+1 are two consecutive points.

Therefore
#�sk+1X
#�sIk+1X

=
#�skX
#�sIkX

k < k + 1.

Proof of Proposition 2.3. We first show that for rgiven ≥ 1 and for any s ∈ supp µ
if there exists lim

n→∞
log µ(Br3−n (s))

log(r3−n) , then

α(s) = lim
n→∞

logµ(Br3−n(s))

log(r3−n)
= lim
n→∞

logµ(Br3−n(s))

log 3−n
. (7)

Indeed, for 0 < h 1 take n such that 3−n−1 < h
r 3−n. Then

logµ(Br3−n(s))

log(r3−n−1)
logµ(Bh(s))

log h

logµ(Br3−n−1(s))

log(r3−n)
.

Since lim
n→∞

log(r3−n−1)
log(r3−n) = 1, we have

lim
n→∞

logµ(Br3−n(s))

log(r3−n−1)
= lim
n→∞

logµ(Br3−n−1(s))

log(r3−n)
= lim

n→∞
logµ(Br3−n(s))

log(r3−n)
.

Therefore, (7) follows. Since

|S − Sn| 6
∞3
i=1

3−n−i = 3.3−n,

we have

µ(B3−n(s)) = Prob(|S − s| 3−n)

Prob(|Sn − s| 3−n + 3.3−n = 4.3−n)

= µn(Br3−n(s)), (8)

where r = 4.

Similarly, we obtain

µn(Br3−n(s)) µ(B(r+3)3−n(s)).
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From the latter and (8) we get

logµ(B(r+3)3−n(s))

log 3−n
logµn(Br3−n(s))

log 3−n
logµ(B3−n(s))

log 3−n
.

Letting n→∞, by (7) we obtain

α(s) = lim
n→∞

logµn(Br3−n(s))

log 3−n
. (9)

Observe that Br3−n(s) contains sn and at most six consecutive points in supp µn
(because 2r = 8 and by Consequence 2). By Lemma 2.4,

logµn(sn)

log 3−n
≥ logµn(Br3−n(s))

log 3−n
≥ log[6n

5µn(sn)]

log 3−n
.

From the latter and (9) we get

α(s) = lim
n→∞

logµn(sn)

log 3−n
= lim
n→∞

| logµn(sn)|
n log 3

.

The proposition is proved.

For each infinite sequence x = (x1, x2, . . . ) ∈ D∞ defines a point s ∈ supp µ by

s = S(x) :=
∞3
n=1

3−nxn.

Let

x = (x1, x2, . . . ) = (0, 6, 0, 6, . . . ), i.e., x2k−1 = 0, x2k = 6, k = 1, 2, . . . (10)

Then we have

2.5. Claim. For x = (x1, x2, . . . ) ∈ D∞ is defined by (10), we have

a)

#�s2nX = #�s2n−1X;
b)

#�s2(n+1)X = #�s2nX+#�s2(n−1)X, (11)

for every n ≥ 2, where sn denotes n- partial sum of s = S(x).

Proof. a) Observe that #�s2nX ≥ #�s2n−1X. On the other hand, let (xI1, xI2, . . . , xI2n) ∈
�s2nX. If xI2n W= 6, then by Claim 2.1, xI2n = 0. It follows that sI2n−1−s2n−1 = 2

32n−1 , where

sI2n−1 =
�2n−1
i=1 3−ixIi. From Claim 2.2.b), it follows that x2n−1 = 1, a contradiction to

x2n−1 = 0. Thus xI2n = 6, which implies (xI1, xI2, . . . , xI2n−1) ∈ �s2n−1X. That means

#�s2n−1X ≥ #�s2nX.

Therefore

#�s2nX = #�s2n−1X.
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b) For any element (xI1, xI2, . . . , xI2n, xI2n+1, xI2n+2) ∈ �s2n+2X, from the proof of a) we

have (xI1, xI2, . . . , xI2n+1) ∈ �s2n+1X. So, by Claim 2.1, xI2n+1 = 0 or xI2n+1 = 6 (because

x2n+1 = 0).

If xI2n+1 = 0 then (xI1, xI2, . . . , xI2n) ∈ �s2nX.
If xI2n+1 = 6, since (xI1, xI2, . . . , xI2n, 6, 6) ≈ (x1, x2, . . . , x2n−1, x2n, 0, 6), s2n−sI2n =

2
32n , where s

I
2n =

�2n
i=1 3

−ixIi. By Claim 2.2.b) and x2n = 6 we have xI2n−1 = xI2n = 1,

which implies (xI1, xI2, . . . , xI2n−2) ∈ �s2n−2X (because (0, 6, 0) ≈ (1, 1, 6)). Let

A = {(xI1, xI2, . . . , xI2n−2, xI2n−1, xI2n, 0, 6) : (xI1, xI2, . . . , xI2n) ∈ �s2nX},

B = {(yI1, yI2, . . . , yI2n−2, 1, 1, 6, 6) : (yI1, yI2, . . . , yI2n−2) ∈ �s2n−2X}.
From the above arguments we have

A ∪B = �s2n+2X and A ∩B = ∅.

Therefore

#�s2(n+1)X = #A+#B = #�s2nX+#�s2(n−1)X.
The lemma is proved.

Consequence 3. For s ∈ supp µ is defined as in Claim 2.5 we have

#�s2nX = #�s2n−1X =
√
5

5
[(
1 +
√
5

2
)n+1 − (1−

√
5

2
)n+1], (12)

for every n ≥ 1.
Proof. It is easy to see that (12) satisfies (11).

2.6. Claim. For s ∈ supp µ is defined as in Claim 2.5 we have

α(s) = 1− log(1 +
√
5)− log 2

2 log 3
.

Proof. For n ≥ 2 take k ∈ N such that 2k n < 2(k + 1). By (12),

√
5

5
(ak+11 − ak+12 ) #�snX

√
5

5
(ak+21 − ak+22 ),

where a1 =
1+
√
5

2 , a2 =
1−√5
2 .

It follows that

| log
√
5
5 (a

k+2
1 − ak+22 )3−2k|

2(k + 1) log 3

| logµn(sn)|
n log 3

| log
√
5
5 (a

k+1
1 − ak+12 )3−2k−2|
2k log 3

.

Since

lim
k→∞

| log
√
5
5 (a

k+2
1 − ak+22 )3−2k|

2(k + 1) log 3
= lim

k→∞
| log

√
5
5 (a

k+1
1 − ak+12 )3−2k−2|
2k log 3

= 1− log a1
2 log 3

,
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by Proposition 2.3 we get

α(s) = 1− log(1 +
√
5)− log 2

2 log 3
.

The claim is proved.

2.7. Claim. Let x = (x1, x2, . . . ) be a sequence defined by (10). Then we have

3#�s2n−1X < 2#�s2n+1X for every n,

where s = S(x) and sn denotes n-partial sum of s.

Proof. Observe that the assertion holds for n = 1, 2. For n ≥ 3, by Claim 2.5 we have

2#�s2n+1X = 2#�s2n−1X+ 2#�s2n−3X
= 3#�s2n−1X −#�s2n−1X+ 2#�s2n−3X
= 3#�s2n−1X −#�s2n−3X −#�s2n−5X+ 2#�s2n−3X
= 3#�s2n−1X+#�s2n−3X −#�s2n−5X > 3#�s2n−1X.

The claim is proved.

2.8. Claim. Assume that sn+1 ∈ supp µn+1 has two representations through points in
supp µn(n > 3). Then, either

#�sn+1X = #�sn−1X+#�sn−3X for some sn−1 ∈ supp µn−1 and some sn−3 ∈ supp µn−3,

or

#�sn+1X 2#�sn−2X for some sn−2 ∈ supp µn−2.
Proof. Let sn+1 = sn+

0
3n+1 = s

I
n+

6
3n+1 , which implies sn− sIn = 2

3n , so by Claim 2.2.b),

xIn = 1, xn = 0 or xn = 6. We consider the case xn = 0. The case xn = 6 is similar. We
have

sn+1 = sn−1 +
0

3n
+

0

3n+1
= sIn−1 +

1

3n
+

6

3n+1
. (13)

We claim that sn has only one representation through point sn−1 ∈ supp µn−1. In fact, if
it is not the case, sn = sn−1 + 0

3n = s
II
n−1 +

6
3n , then

sn+1 = sn−1 +
0

3n
+

0

3n+1
= sIIn−1 +

6

3n
+

0

3n+1
= sIn−1 +

1

3n
+

6

3n+1
,

which implies sn−1 − sIn−1 = sIn−1 − sIIn−1 = 1
3n−1 . a contradiction to Consequence 2.

Hence,

#�sn+1X = #�sn−1X+#�sIn−1X.
From (13) yield sn−1−sIn−1 = 1

3n−1 , by Claim 2.2.a), xn−1 = 1. So that , by Consequence
1.a), #�sn−1X = #�sn−2X. Therefore

#�sn+1X = #�sn−2X+#�sIn−1X.
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Consider the following cases.

1. If sIn−1 has only one representation through some point sIn−2 ∈ supp µn−2 then
#�sIn−1X = #�sIn−2X. Without loss of generality we may assume that #�sn−2X ≥ #�sIn−2X.
Then

#�sn+1X = #�sn−2X+#�sIn−2X 2#�sn−2X.
2. If sIn−1 has two representations through points in supp µn−2, sIn−1 = sn−2 +

0
3n−1 = s

I
n−2 +

6
3n−1 , then

sn+1 = sn−2 +
1

3n−1
+
0

3n
+

0

3n+1
= sn−2 +

0

3n−1
+
1

3n
+

6

3n+1

= sIn−2 +
6

3n−1
+
1

3n
+

6

3n+1
.

Since (1, 0, 0) ≈ (0, 1, 6), sn−2 = sIIn−2, and so sn−2−sIn−2 = 2
3n−2 . Hence, by Claim 2.2.b),

xIn−2 = 1. Thus, sIn−2 = sIn−3 +
1

3n−2 .

We check that sn−2 has only one representation through some point sn−3 ∈ supp µn−3.
If it is not the cases sn−2 = sn−3 + 0

3n−2 = s
II
n−3 +

6
3n−2 , then

sn+1 = sn−3 +
0

3n−2
+

1

3n−1
+
0

3n
+

0

3n+1

= sIIn−3 +
6

3n−2
+

1

3n−1
+
0

3n
+

0

3n+1

= sIn−3 +
1

3n−2
+

6

3n−1
+
1

3n
+

6

3n+1
,

which implies sn−3−sIn−3 = sIn−3−sIIn−3 = 1
3n−3 . Which is a contradiction to Consequence

2. So, #�sn−2X = #�sn−3X. Therefore

#�sn+1X = #�sn−3X+#�sIn−1X.

The claim is proved.

2.9. Claim. Let k ≥ 3 be a natural number such that

#�t2n+1X #�s2n+1X for all n k and for every t2n+1 ∈ supp µ2n+1.

Then

2#�t2nX #�s2n+1X+#�s2n−1X for all n k and for every t2n ∈ supp µ2n,

where s is defined as in Claim 2.5 and sn denotes n-partial sum of s.

Proof. Observe that, if t2n has only one representation through point t2n−1 ∈ supp µ2n−1
then the claim is true. Suppose that t2n has two representations through points in

supp µ2n−1, by Claim 2.8, either #�t2nX = #�t2n−2X+#�t2n−4X or #�t2nX 2#�t2n−3X.
1. Let #�t2nX = #�t2n−2X+#�t2n−4X. Putting

t2n+1 = t2n−2 +
0

32n−1
+

6

32n
+

0

32n+1
, t2n−1 = t2n−4 +

0

32n−3
+

6

32n−2
+

0

32n−1
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we have

#�t2n+1X ≥ 2#�t2n−2X , #�t2n−1X ≥ 2#�t2n−4X.
It follows that

2#�t2nX = 2#�t2n−2X+ 2#�t2n−4X
#�t2n+1X+#�t2n−1X #�s2n+1X+#�s2n−1X.

2. #�t2nX 2#�t2n−3X. By Claims 2.5 and 2.7 we get

2#�t2nX 4#�t2n−3X 4#�s2n−3X
= #�s2n−3X+ 3#�s2n−3X
#�s2n−3X+ 2#�s2n−1X.

= #�s2n+1X+#�s2n−1X.

The claim is proved.

We say that x = (x1, x2, . . . , xn) ∈ Dn is a maximal sequence if

#�tnX #�snX for every tn ∈ supp µn,

where sn =
�n
i=1 3

−ixi.
The following fact given an estimation for the greatest lower bound of local dimension.

2.10. Proposition. For every n, (x1, x2, . . . , x2n+1) = (0, 6, 0, 6, . . . , 0, 6, 0) is a maximal

sequence.

Proof. We will prove the proposition by induction. By Claim 2.8, it is straightforward to

check that the assertion holds for n = 1, 2, 3 (#�s3X = 2,#�s5X = 3,#�s7X = 5). Suppose
that it is true for all n k(k ≥ 3). We show that the proposition is true for n = k + 1.
Let t2(k+1)+1 = t2k+3 be an arbitrary point in supp µ2k+3. Clearly the assertion holds

if t2k+3 has only one representation through some point in supp µ2k+2. If t2k+3 has two

representations through points in supp µ2k+2 then by Claim 2.8 we have two following

cases:

Case 1. #�t2k+3X = #�t2k+1X+#�t2k−1X for some t2k+1 ∈ supp µ2k+1 and some t2k−1 ∈
supp µ2k−1. Then, by Claim 2.5 we get

#�t2k+3X #�s2k+1X+#�s2k−1X = #�s2k+3X.

Case 2. #�t2k+3X 2#�t2kX for some t2k ∈ supp µ2k. Then, by Claims 2.5 and 2.9 we
have

#�t2k+3X 2#�t2kX #�s2k+1X+#�s2k−1X = #�s2k+3X.
Therefore, (x1, x2, . . . , x2n+1) = (0, 6, 0, 6, . . . , 0, 6, 0) is a maximal sequence. The propo-

sition is proved.
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3. Proof of The Main Theorem

We call an infinite sequence x = (x1, x2, . . . ) ∈ D∞ a prime sequence if #�snX = 1
for every n, where sn =

�n
i=1 3

−ixi.

3.1. Claim. α = 1, α = 1− log(1+
√
5)−log 2

2 log 3 = 1− log a1
2 log 3 .

Proof. For any prime sequence x = (x1, x2, . . . ) we have #�snX = 1 for every n, where

sn =
�n
i=1 3

−ixi. Therefore, by Proposition 2.3 we get

α = α(s) = lim
n→∞

| logµn(sn)|
n log 3

= 1,

where s = S(x).

From Claim 2.6 we have

α 1− log a1
2 log 3

.

For any t ∈ supp µ, by Proposition 2.10 #�t2n+1X #�s2n+1X =
√
5
5 (a

n+2
1 − an+22 ) for

evrey n, we have

lim
n→∞

| logµ2n+1(t2n+1)|
(2n+ 1) log 3

≥ lim
n→∞

| log
√
5
5 (a

n+2
1 − an+22 )3−2n−1|
2(n+ 1) log 3

= 1− log a1
2 log 3

, (14)

where tn be n- partial sum of t. On the other hand, since #�t2nX #�s2n+1X,

lim
n→∞

| logµ2n(t2n)|
(2n) log 3

≥ lim
n→∞

| log
√
5
5 (a

n+2
1 − an+22 )3−2n|
2(n) log 3

= 1− log a1
2 log 3

. (15)

Combinating (14) and (15) we get

α ≥ 1− log a1
2 log 3

.

Therefore

α = 1− log a1
2 log 3

= 1− log(1 +
√
5)− log 2

2 log 3
.

The claim is proved.

To complete the proof of our Main Theorem it remains to show that E = [1 −
log(1+

√
5)−log 2

2 log 3 , 1], i.e., for any β ∈ (1− log a1
2 log 3 , 1) there exists s ∈ supp µ for which α(s) = β.

Let r = 2(1− β) log 3log a1
. It is easy to see that 0 < r < 1.

For i = 1, 2, . . . , define

ki =

F
2i+ 1 if i is odd;

[2i(1−r)r ] if i is even,

where [x] denotes the largest integer x.

Let nj =
�j
i=1 ki and let

Ej = {i : i j and i is even} ; Oj = {i : i j and i is odd},
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ej =
3
i∈Ej

ki ; oj =
3
i∈Oj

ki.

Then nj = oj + ej .

3.2. Claim. With the above notation we have

lim
j→∞

j

nj
= 0 ; lim

j→∞
nj−1
nj

= 1 and lim
j→∞

oj
nj
= r.

Proof. The proof of the first limit is trivial. The second limit follows from the first one.

To prove the third limit, without loss of generality we may assume that j = 2k+1. Then

we have oj = 2
�k
i=0(2i+ 1) + k + 1 = (k + 1)(2k + 3). Since

4(1− r)
r

k3
i=1

i− k
k3
i=1

[
4i(1− r)

r
]

4(1− r)
r

k3
i=1

i,

2(1− r)
r

k(k + 1)− k ej
2(1− r)
r

k(k + 1).

Hence

(k + 1)(2k + 3)

(k + 1)(2k + 3) + 2(1−r)
r k(k + 1)

oj
nj

(k + 1)(2k + 3)

(k + 1)(2k + 3) + 2(1−r)
r k(k + 1)− k

.

Therefore

lim
j→∞

oj
nj
= r.

The claim is proved.

We define s ∈ supp µ by s = S(x), where

x = (0, 6, 0,� ,� 1
k1=3

1, 1, . . . , 1,� ,� 1
k2

0, 6, 0, 6, 0,� ,� 1
k3=5

1, 1, . . . , 1,� ,� 1
k3

. . . ). (16)

Note that, for i ∈ Oj , from (12),

#�skiX =
√
5

5
(a

ki+3

2
1 − a

ki+3

2
2 ) =

⎧⎨⎩ >
√
5
5 a

ki+3

2
1

<
√
5
5 a

ki+3

2 +1
1 .

(17)

For s ∈ supp µ is defined (16) and for nj−1 n < nj we have�
i∈Oj−1

#�skiX #�snX
�
i∈Oj

#�skiX.

Hence, by (17) yield

(

√
5

5
)
j−1
2 a

oj−1
2 + 3

2
j−1
2

1 #�snX (

√
5

5
)
j+1
2 a

oj
2 +

5
2
j+1
2

1 ,
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which implies

log[(
√
5
5 )

j−1
2 a

oj−1
2 + 3

2
j−1
2

1 ]

nj log 3

log#�snX
n log 3

log[(
√
5
5 )

j+1
2 a

oj
2 +

5
2
j+1
2

1 ]

nj−1 log 3
.

From Claim 3.1 we get

lim
n→∞

log#�snX
n log 3

=
r

2

log a1
log 3

.

Therefore

α(s) = lim
n→∞

| log#�snX3−n|
n log 3

= 1− lim
n→∞

log#�snX
n log 3

= 1− r
2

log a1
log 3

= β.

The Main Theorem is proved.
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