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NON-LINEAR ANALYSIS OF MULTILAYERED

REINFORCED COMPOSITE PLATES

Khuc Van Phu, Nguyen Tien Dat

Military Technical Academy

Abstract. This paper deals with the analysis of non-linaer multilayered reinforced com-

posite plates with simply supported along its four edges by Bubnov - Galerkin and Finite

Element Methods. Numerical results are presented for illustrating theoretical analysis of

reinforced and unreinforced laminated composite plates.

Keywords: Stiffened laminated composite plate, multilayered reinforced composite plates

1. Introduction

Multilayered reinforced composite plates are used extensively in Naval, Aerospace,

Automobile applications and in Civil engineering.v.v... Today, analysis of linear laminated

composite plates has been studied by many authors. However, the analysis of non-linear

laminated composite plates has received comparatively little attention [3, 4, 5, 6,...] spe-

cially for analysis of non-linear stiffened laminated composite plates and shells subjected

to distributed transverse loads. This problem is studied in the present paper.
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2. Governing equations of laminated plates

Let’s consider a rectangular multilayered reinforced composite plate, in which each

layer is made of unidirectional composite material and stiffeners are made by composite

material. This plate is subjected to distributed transverse loads (Figure 1).

For multilayered reinforced composite plates working in the elastic state the relation

between internal force and deformation is of the form\
σ
�
=
�
D
=
{ε} (1)

where \
σ
�
=
\
Nx Ny Nxy Mx My Mxy

�T
�
D
=
- Matrix of stiffness constants of multilayered reinforced composite plates�

D
=
=

^
[A] [B]
[B] [D]

�
(2)

in which

(Aij , Bij , Dij =
N3
k=1

hk8
hk−1

D
Qij
i
k
(1, z, z2)dz (i, j = 1, 2, 6),

{ε} - the deformation of point of the middle surface.
The strain - displacement relations in the non-linear theory are of the form

εx =
∂u

∂x
+
1

2

p∂w
∂x

Q2
, εy =

∂v

∂y
+
1

2

p∂w
∂y

Q2
, γxy =

p∂u
∂y
+
∂v

∂x

Q
+
∂w

∂x

∂w

∂y
, (3)

kx = −∂
2w

∂x2
, ky = −∂

2w

∂y2
, kxy = −2 ∂

2w

∂x∂y
,

where u, v, w are the middle displacements along the x, y and z axis respectively.

For a plate simply supported on all edges, the following boundary condition are in

posed

+ At edges x = 0, x = a: w = 0; v = 0; Mx = 0; (4)

+ At edges y = 0, y = b: w = 0; u = 0; My = 0; (5)

3. Bubnov - Galerkin methods

According to Lekhnistki theory when expanding internal forces - deformations (1),

we obtain the expression for stress resultants and flexion moments of multilayered rein-

forced composite plates

Nx = (A11 +E1A1/s1)εx +A12εy + (E1A1/s1)z1kx,

Ny = (A22 +E2A2/s2)εy +A12εx + (E2A2/s2)z2ky,

Nxy = A66γxy, (6)

Mx = (D11 +E1I1/s1)kx +D12ky + (E1A1/s1)z1εx,

My = (D22 +E2I2/s2)ky +D12kx + (E2A2/s2)z2εy,

Mxy = D66kxy,
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where

- Aij , Dij (i, j = 1, 2 and 6) are extending and bending stiffnesses of the plate

without stiffeners,

- E1, E2 are the Young modulus of the longitudinal and transversal stiffeners,

respectively,

- A1, A2 are the section areas of the longitudinal and transversal stiffeners, respec-

tively,

- I1, I2 are the inertial moments of cross-section of the longitudinal and transversal

stiffeners, respectively,

- s1, s2 are the distances between two longitudinal stiffeners and between two

transversal stiffeners, respectively,

- z1, z2 are the distances from the mid-plane to the centroids of the longitudinal

and transversal stiffeners, respectively,

The equilibrium equations of a plate according to [3] are

∂Nx
∂x

+
∂Nxy
∂y

= 0,

∂Nxy
∂x

+
∂Ny
∂y

= 0, (7)

∂2Mx

∂x2
+ 2

∂2Mxy

∂x∂y
+
∂2My

∂y2
+Nx

∂2w

∂x2
+ 2Nxy

∂2w

∂x∂y
+Ny

∂2w

∂y2
− q(x, y) = 0.

Substituting (3) and (6) into (7) after some operations we obtain the equilibrium

equations of the multilayered reinforced composite plates

(A11 +E1A1/s1)
∂2u

∂x2
+A66

∂2u

∂y2
+ (A12 +A66)

∂2v
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+A66
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∂x2
+ (A12 +A66)
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(D11 +E1I1/s1)
∂4w

∂x4
+ 2(D12 + 2D66)

∂4w

∂x2∂y2
+ (D22 +E2I2/s2)

∂4w

∂y4

− (E1A1/s1)z1 ∂
3u

∂x3
− (E2A2/s2)z2 ∂

3v

∂y3
− (E1A1/s1)z1 ∂w

∂x

∂3w

∂x3

− (E2A2/s2)z2 ∂w
∂y

∂3w

∂y3
− 1
2
(A11 +E1A1/s1)

∂2w

∂x2

p∂w
∂x

Q2
− 1
2
A12

∂2w

∂y2

p∂w
∂x

Q2
− 1
2
A12

∂2w

∂x2

p∂w
∂y

Q2
− 1
2
(A22 +E2A2/s2)

∂2w

∂y2

p∂w
∂y

Q2
− 2A66 ∂w

∂x

∂w

∂y

∂2w

∂x∂y

− (A11 +E1A1/s1)∂u
∂x

∂2w

∂x2
− 2A66 ∂u

∂y

∂2w

∂x∂y
−A12 ∂u

∂x

∂2w

∂y2
−A12 ∂v

∂y

∂2w

∂x2

− 2A66 ∂v
∂x

∂2w

∂x∂y
− (A22 +E2A2/s2)∂v

∂y

∂2w

∂y2
− q(x, y) = 0,



Non-linear analysis of multilayered reinforced composite plates 19

in which q(x, y) is the lateral load, which can be expanded in a double Fourier series

q(x, y) =
∞3
m=1

∞3
n=1

qmn sin
mπx

a
sin

nπy

b
. (9)

For uniformly distributed load of intensity q0, the coefficients qmn are given by

qmn =
16q0
mnπ2

D− 1im+n
2 , m, n = 1, 3, 5, . . . . (10)

If the boundary conditions discussed here can be satified, the displacements are

represented by

u = Umn cos
mπx

a
sin

nπy

b
,

v = Vmn sin
nπx

a
cos

nπy

b
, (11)

w =Wmn sin
mπx

a
sin

nπy

b
,

where

- a, b: edges of plate in x and y axial directions respectively,

- m, n: the numbers of halfwave in the x and y axial directions respectively.

Substituting expressions (11) into the equilibrium equations (8) and applying the

Galerkin procedure yield the set of three algebraic equations with respect to the amplitudes

Umn, Vmn,Wmn, where the first two equations of this system are linear algebraic equations

for Umn, Vmn:

a1Umn + a2Vmn = a3Wmn + a4W
2
mn,

a5Umn + a6Vmn = a7Wmn + a8W
2
mn. (12)

Getting from (12) expression Umn, Vmn with respect to Wmn and substituting into

the third equation we obtain a non-linear equation with respect to Wmn

a9W
3
mn +A10W

2
mn + a11Wmn = qmn, (13)

where ai are coefficients which depend on the material, geometry and the half wave,

a1 = (A11 +E1A1/s1)
m2b

a
+A66

n2a

b
,

a2 = a5 = (A12 +A66)mn,

a3 = (E1A1/s1)z1
m3πb

a2
,

a4 = −16
9

�
2(A11 +E1A1/s1)

pm
a

Q2 b
nπ
− (A12 −A66) n

bπ

=
,

a6 = (A22 +E2A2/s2)
n2a

b
+A66

m2b

a
,

a7 = (E2A2/s2)z2
n3aπ

b2
,
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a8 = −16
9

�
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b

Q2 a
mπ
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aπ

=
,
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3
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�
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+
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=
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4
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4
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·

4. Finite element method

Based on strain energy principle, the finite element method has built equilibrium

equation of the plate [7] J
K
o{q} = {F}. (14)

For building equation (14), we need to build matrix [K], which are built from

stiffness matrix of element [Ke].

According to [4] for building [Ke], we can see multilayered reinforced composite

plates, which are a system of unreinforced plates and beams. From this opinion, the

building stiffness matrix [Ke] of reinforced plates is difined

[Ke] = [K
t
e] +K

d
e ], (15)

where: [Kt
e], [K

d
e ] are stiffness matrices of the plate and beam elements.

* Stiffness matrix of the plate elements
J
Kt
e

o
The relation between deformation and node displacement is of the form

{εt} = JBto{qe}, (16)

where J
Bt
o
=
J
Bt0
o
+
J
BtL
o
. (17)
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in which is the same matrix as in linear infinitesimal strain analysis,
J
BtL
o
is the large

strain matrix depending on {qe}.
Thus

d{εt} = dDJBto{qe}i = JBtod{qe}+ {qe}dJBto. (18)

Because
J
BtL
o
depends on {qe}, d

J
Bt
o
= d
J
BtL
o
and {qe}d

J
Bt
o
=
J
B∗L
o
d{qe}, then

(18) become

d{ε} = DJBto+ JB∗Loid{qe}, (19)

where
J
B∗L
o
has the same form as d

J
BtL
o
but instead of dqi we put qi

d
�
BtL
o
=

^
[0] d

J
BtLu
o

[0] [0]

� J
B∗L
o
=
J
BL
o
. (20)

According to [7], the sum of internal and external forces is difined as follows�
Q
=
=

8
S

�
Bt
=T\

σt
�
dS − {F} (21)

in which {F} - external forces, from (21) we receive

d
\
Q
�
=

8
S

d
J
Bt
oT\

σt
�
dS +

8
S

J
Bt
oT
d
\
σt
�
dS. (22)

Otherwise, from (1) we obtain

d
\
σt
�
=
�
D
t
=
d
\
εt
�− �Dt

=pJ
Bt
o
+
J
B∗L
oQ
f{qe}. (23)

Substituting (23) into (22) yields

d
\
Q
�
=

8
S

Dd
J
Bt
oT\

σt
�
dS +

8
S

J
Bt
o�
D
t
=pJ
Bt
o
+
J
B∗L
oQ
dSd{qe}. (24)

Because d
J
Bt
oT
= d
J
BtLu
oT
and
J
B∗L
o
=
J
BtL
o
, one can get

d
\
Q
�
=

8
S

d
J
BtLu
oT\

σt
�
dS +

�
K
=
, (25)

in which �
K
=
=

8
S

pJ
Bt
oT �

D
t
=J
Bt
o
+
J
Bt
oT �

D
t
=J
BTL
oQ
dS. (26)

Substituting
J
Bt
o
from (17) into (26) and after some operations we obtain�

K
=
=
J
Kt
0e

o
+
J
Kt
Le

o
, (27)
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where
J
Kt
0e

o
is the same stiffness matrix as in linear infinitesimal strain analysis. For

elements of the plate J
Kt
0e

o
=

8
S

J
Bt0
oT �

D
t
=J
Bt0
o
dS. (28)

Matrix
J
Kt
Le

o
is the large displacement matrix, which can be defined as follows

J
Kt
Le

o
=

8
S

p
2
J
Bt0
oT �

DF t
=J
BtL
o
+
J
BtL
oT �

D
t
=J
Bt0
o
+ 2
J
BtL
oT �

D
t
=J
BtL
oQ
dS. (29)

The first term of equation (25) can generally be written as:8
S

d
J
Bt
o\
σt
�
dS =

J
Kt
σe

o
d{qe} (30)

where
J
Kt
σe

o
is a symmetric matrix which dependens on the stress level. This matrix is

known as initial stress matrix or geometric matrix.

According to [7] we have

J
Kt
σe

o
=

^
[0] [0]
[0]
J
Ku
σe

o �,
with J

Ku
σe

o
=

8
S

J
Gt
oT^ N t

x N t
xy

N t
xy N t

y

�J
Gt
o
dS, (31)

in which

J
Gt
o
=

⎡⎢⎢⎣
∂N t

u1

∂x

∂N t
u2

∂x
· · · · · · ∂N t

u11

∂x

∂N t
u12

∂x

∂N t
u1

∂y

∂N t
u2

∂y
· · · · · · ∂N t

u11

∂y

∂N t
u12

∂y

⎤⎥⎥⎦ (32)

Thus, for element of the plate we obtain

d
�
Q
=
=
pJ
Kt
0e

o
+
J
Kt
Le

o
+
J
Kt
σe

oQ
d{qe} =

J
Kt
e

o
d{qe}

and stiffness matrix of the element of the plateJ
Kt
e

o
=
J
Kt
0e

o
+
J
Kt
Le

o
+
J
Kt
σe

o
. (33)

* Stiffness matrix of element of the beam
J
Kt
σe

o
Using two-noded element of the beam with three degree of freedom at each node\

ud1, w
d
1 ,ϕ

d
1, u

d
2, w

d
2 ,ϕ

d
2

�T
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Acording to [8] for a element of multilayered composite beam, which works in the

elastic state the relation between internal force and deformation are of the form\
σd
�
=
�
D
d
=
{εd}, (34)

in which

{σd} = \Nd
x Md

y

�T
;
�
D
d
=
=

^
[Ad] [Bd]

[Bd] [Dd]

�
(35)

The matrices [Ad], [Bd], [Dd] are defined in [8], {εd} the deformation of point of
the middle surface \

εd
�
=
+du
dx
+
1

2

pdw
dx

Q2
− d

2w

dx2

�T
(36)

or we can be rewritten in the form\
εd
�
=

F\
εd0m
�\

εd0u
� k+F\εdL�{0}

k
(37)

Expressing the defomation with noded diplacement as follows\
εd
�
=
J
Bd
o\
qde
�
, (38)

where J
Bd
o
=
J
Bd0
o
+
J
BdL
o
. (39)

Similar to the multilayered composite plate, we obtain stiffness matrix of element

of beam as follow J
Kd
e

o
=
J
Kd
0e

o
+
J
Kd
Le

o
+
J
Kd
σe

o
, (40)

where J
Kd
0e

o
=

8
L

J
Bd0
oT �

Dd

=J
Bd0
o
dx

J
Kd
Le

o
=

8
L

p
2
J
Bd0
oT �

Dd

=J
BdL
o
+
J
BdL
o�
Dd

=J
Bd0
o
+ 2
J
BdL
o�
Dd

=J
BdL
oQ
dx (41)

J
Kd
σe

o
=

8
L

J
Gd
oT J
Nd
oJ
Gd
o
dx.

5. Numerical examples

Let’s consider a simply supported stiffened rectangular symmetrical composite plate:

a = 0.8m; b = 0.5m. The materials of the plate are composed by Thornel 300 graphite

fibers and Narmco 5205 Thermosetting Epoxy resin [5], the properties of these materials

are: E1 = 127.4GPa; E2 = 13GPa; G12 = 6.4GPa; ν12 = 0.38; The plate has six layers:

[45/− 45/90/90/− 45/45]; thickness of each layer: t = 0.5mm; The laminate plate is re-
inforced by longitudinal and transversal stiffeners, which were made of CPS material, the

stiffeners have the same sizes, as follows: bg ×hg = 4mm× 6mm; Spacing of longitudinal
and transverse stiffeners is: s1 = s2 = 0.1m.

The results according to two methods are presented on the Figs 2, 3, 4.
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.

Fig. 2. Displacement of cut trace, going over the center of plate and paralled with x axis

Fig. 3, Relation between displacement and external force

Fig. 4. Effecty of thickness of the plate
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Conclusions

The results by the Bupnov - Galerkin method agree qualitatively with those by the

Finite element method, but the results by the Bupnov - Galerkin method are smaller than

that by the FEM. This difference can be reduced, if we take more number of terms in the

double Fourier series of the displacements.

Displacement of the non-linear analysis of multilayered reinforced CPS plates are

smaller than that of multilayered unreinforced CPS plates. This means, the hardness of

multilayered reinforced CPS plates is bigger than that of multilayered unreinforced CPS

plates.

Displacement and stress of the linear analysis of multilayered CPS plate are directly

proportional to external force, but displacement and stress of the non-linear analysis of

multilayered CPS plate aren’t direct by proportional to external force. If external forces are

small, displacement in non-linear problem is approximately equal with linear displacement.

When external force increases, the difference between linear and non-linear analysis also

gets increased. This means non-linear analysis is exacter than linear analysis.

If the thickness of the plate is increased, the difference between reinforced and

unreinforced plate also gets reduced, so the stiffener takes effect for thin plates.
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