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Abstract. The wavelet transform is a new arrival on the mathematical scene. It is 

widely applied in the area of engineering, image processing. In this paper, we 

present the main concepts of wavelet, the averaging and differencing technique 

related to a wavelet decomposition, a linear algebra implementation of the Haar 

wavelet transform.  

1. What is wavelet? 

A wavelet is a function that has finite energy and has an average of zero. 

Wavelets are used for sub-band coding, signal and image processing, 
denoising noisy data, detecting self similarity in a time series and compression. 
Wavelets are also to be used in many other fields. 

Wavelet give us the ability to cut up the data into different frequency 
components, which can be matched to the scale or size of the function. 

Sine and cosine functions extend in either direction to infinity, however, 
wavelets are just for a small portion of time, and are called local. We can 
approximate functions that have spikes, irregularities or are choppy. 

Some examples of mother wavelets: 

a) Haar Wavelet 

b) Daubechie’s 4 Wavelet 

c) Daubechie’s 6 Wavelet 

2. Why use Wavelets? 

The Haar Wavelet transform provide a method of imaging compression so that 
it takes up less memory and therefore transmits faster. Discrete Cosine Transform 
(DCT) introduces block wide based noise while wavelet transforms for image 
porcessing tends to throw away noise, so wavelet tries to make the image easy to 
look at. 

To use wavelets for compression, a mother wavelet, such as a Haar or 
Daubechie’s 4 or 6 is selected. Here we investigate the use of Haar for image 
compression. The Haar wavelet algorithm has the advantage of being simple to 
compute and easier to understand. The Daubechies D4 algorithm has a slightly 
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higher computational overhead and is conceptually more complex. There is overlap 
between iterations in the Daubechies D4 transform step. This overlap allows the 
Daubechies D4 algorithm to pick up detail that is missed by the Haar wavelet 
algorithm.. 

3. Haar wavelets 

3.1 Haar Wavelet basis functions 

The Haar transform uses square pulses to approximate the original function. 
The basis functions for Haar wavelets at some level all look like a unit pulse, 
shifted along the x-axis. The basis functions are called scales and are usually 
denoted as functions Φ (t), where t denotes time.  

The Haar scales are all of the unit pulses  
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 The functions Φ (t-s)  are the shifted pulses, shifted by s units to the right.  

 
Figure 1: Plot of the unshifted Haar scale function. 

To move to a higher level of detail, we consider the functions Φ (2t-s),  which 
are the same bars halved in width. Suppose we have a step function q whose value 
is 5 on the interval [0, 0.5) and whose value is 3 on the interval [0.5, 1), and 0 
otherwise. Then we can represent q as the function 5Φ (2t) + 3Φ (2t-1). The closest 
representation in the lower resolution would be 4Φ (t), which is determined by 
averaging the previous coefficients (clearly, the average of 5 and 3 is 4). The 
question is how to get from the lower resolution space back to the higher resolution 
space? The answer is to know the wavelets, or the functions that span the space 
that contains the information we have discarded in moving from one resolution to 
another. The wavelet can be expressed as a linear combination of the basis vectors 
for the higher detail space, since it lies inside the higher resolution space which is 
spanned by those basis functions. For the Haar case, there is one wavelet ψ := t → - 
Φ (2t) + Φ (2t - 1),  which looks like a zig-zag square wave:  



Image compression using the Haar Wavelet 
 

53

 
Figure 2: The Haar Wavelet 

To reconstruct the original function, we can easily see that q := t → 4 Φ (t) - ψ 
(t).  In general, we can take the two coefficients of the high resolution basis and re-
express them as coefficients of the lower resolution basis plus the wavelets - all we 
are really doing is a change of basis, which we might usually write as a matrix 
multiplication!  

3.2 The Haar Wavelet transform 

3.2.1 The Haar Forward Transform 

Each step in the forward Haar transform calculates a set of wavelet 
coefficients and a set of averages. If a data set S0, S1, SN-1 contains N elements, 
there will be N/2 averages and N/2 coefficients values. The averages are stored in 
the lower half of the N element array and the coefficients are stored in the upper 
half. The averages become the input for the next step in the calculation, where Ni+1 
= Ni/2. The recursive iterations continue until a single average and a single 
coefficient are calculated. This replaces the original data set of N elements with an 
average, followed by a set of coefficients whose size is an increasing power of two 
(e.g., 20, 21, 22…) 

The Haar equations to calculate an average (ai) and a wavelet coefficient (ci) 
from a data set are shown below: 
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Let’s start with a simple example. Suppose we have a one-dimensional ‘image’ 
with resolution of four pixels: v = [19  13  7  3] 

We can represent this in the Haar basis by computing a wavelet transform. In 
general, if the data string has length equal to 2k, then the transformation process 
will consist of  k steps. In this case, there will be 2 steps since 4 = 22 . 

We perform the following operations on the entries of the vector v: 

Step 1: 

a. Divide the entries of v into two pairs: (19, 13), (7,3). 

b. Form the average of each of these pairs: 
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To recover the original four pixel values from two averaged values, we 
calculate some detail coefficients. The first detail coeficient is 3 since the average is 
3 less than 19 and 3 more than 13. This single number allows us to recover the first 
two pixels of our four-pixel image. Similarly, the second detail coefficient is 2, since 
5 + 2 = 7 and 5 – 2 = 3. 

Thus, we have decomposed the original image into a lower resolution (two 
pixel) and a pair of detail coefficients: v1 = [16  5  3  2]  

Step 2:  

Repeating this process recursively on the averages give the full decomposition: 

 

Resolution Average Detail coefficients 

4 [19   13   7  3]  

2 [16   5] [3   2] 

1 [10.5] [5.5] 

 

Thus, the wavelet transform of original four pixel image is given by 

 [10.5   5.5   3   2] 

The way we computed the wavelet transform by recursively averaging and 
differencing coefficients is called filter bank. Given the transform, we can 
reconstruct the image to any resolution by recursively adding and substructing the 
detail coefficients from the lower resolution versions. 

3.2.2 The inverse transform  

The data input to the forward transform can be perfectly reconstructed using 
the following equations:  
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Storing the image’s wavelet transform is advantage over the image itself 
because a large number of the detail coefficients turn out to be very small in 
magnitude. We can remove these small coefficients and which introduces only small 
errors in the reconstructed image (“Lossy” image compression). 

3.2.3 Application to image compression 

The basic idea behind this method of compression is to treat a digital image as 
an array of numbers i.e., a matrix. Each image consists of a fairly large number of 
little squares called pixels (picture elements). The matrix corresponding to a 
digital image assigns a whole number to each pixel. For example, in the case of  a 
256x256 pixel gray scale image, the image is stored as a 256x256 matrix, with each 
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element of the matrix being a whole number ranging from 0 (for black) to 225 (for 
white). 

For example, the original image is represented by the following matrix (A): 

 

 
Figure 3: Original image 

We can perform a 2 D Haar transform (the averaging and differencing) by 
first performing a 1 D Haar transform on each row and the on each column. , the 
results are row averages in the first column and the detail coefficients in the 
remaining columns of that row. 

311927255.5.05.32

232119175.5.05.32

15131195.5.05.32

75315.5.05.32

13575.5.05.32

91113155.5.05.32

171921235.5.05.32

252729315.5.05.32

−−−
−−−−
−−−−

−−
−−

−−−−
−−−−

−−

 

Now if we apply the averaging and differencing to the column, we get the 
following matrix 

272523215.5.00

119755.5.00

579115.5.00

212325275.5.00

44440000

44440000

00000000

00000005.32

−−−−

−−

−−−−

−−

−−

−−

 

This is matrix that represents our image with one overall average in the 
upper left-hand corner of the matrix. The remaining components are all detail 
coefficients that represent the amount of detail in that area of the image. 
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By doing threshold, we choose a number δ and set all elements with 
magnitude less than δ to zero, we have this simple matrix: 

272523210000

119700000

079110000

212325270000

00000000

00000000

00000000

00000005.32

−−

−

−−

−−
 

By choosing δ > 0, some entries of the matrix will be set to zero, therefore 
some details will be lost and the image will be compressed. The ratio of nonzero 
entries in the transformed matrix  (S=WTAW) to the number of nonzero entries in 
the compressed matrix obtained from S by applying the threshold δ is defined as 
compression ratio. 

We can reconstruct the original image by applying the inverse wavelet 
transform, by doing this we get approximation of the original matrix: 

5.55.595.575.75.95.555.535.11

5.595.55.75.575.555.95.115.53

5.435.435.235.415.395.255.325.32

5.215.215.415.235.255.395.325.32

5.325.325.255.395.415.235.215.43

5.325.325.395.255.235.415.435.21

5.115.535.555.95.75.575.595.5

5.535.115.95.555.575.75.55.59

 

Suppose that A is the matrix corresponding to a certain image. The Haar 
transform  is carried out by  performing the above operations on each row of the 
matrix A and then  by repeating the same operations on the columns of the 
resulting matrix. The row-transformed matrix is AW. Transforming the columns of 
AW is obtained by multiplying AW on the left by the matrix WT (the transpose of W). 
Thus, the Haar transform takes the matrix A and stores it as WTAW. Let S denote 
the transformed matrix: 

 AWWS T= . 

 Using the properties of inverse matrix, we can retrieve our original matrix: 
1111 )()( −−−− == SWWSWWA TT .  

This allows us to see the original image (decompressing the compressed 
image). 
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Using wavelet transformation and inverse wavelet transformation, we have 
lost some of the detail in the image but it would not be noticeable in most cases. 

  

 
Figure 4. Original image and decompressing the compressed image. 

4. Wavelet transform: A linear Algebra view 

4.1 The Forward transform 

Averaging and differencing can be calculated by matrix multiplication of the 
signal [S0, S1,..., SN] and the vector of the same size [0.5,0.5,0,0,...0]. This is the 
scaling vector. The first coefficient is calculated by the inner product of the signal 
and the vector [0.5,- 0.5,0,0, ...0]. This is the wavelet vector. 

The next average and coefficient are calculated by shifting the scaling hi and 
wavelet vectors gi by two and calculating the inner products.  

The scaling and wavelet values for the Haar transform are shown in below 
matrix form 

h0    h1     0    0   ... 

g0    g1     0    0   ... 

 0      0     h0   h1  ... 

 0      0     g0   g1  ...  

  .       .       .      .    . 

  .       .       .      .      . 

  .       .       .      .        . 

 

The first step of the forward Haar transform for an eight element signal is 
shown below. Here signal is multiplied by the forward transform matrix 
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The arrow represents a split operation that reorders the results so that the 
average values are in the first half of the vector and the coefficients are in the 
second half. 

The next step would be multiply the ai values by a 4 x 4 transform matrix, 
generating two new averages and two new coefficients which would replace the 
averages in the first step. 

The last step would multiply these new averages by a 2 x 2 matrix generating 
the final average and the final coefficients. 

 
Figure 5: A small picture of Lena after one pass of the Haar transform 
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Figure 6. Three level decomposition of Lena image 

4.2 The Inverse transform 

Like the forward Haar transform, we can use the linear algebra terms to 
described the inverse transform. The matrix operation to reverse the first step of 
the Haar transform for an eight element signal is shown below. 
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The arrow represents a merge operation that interleaves the averages and the 
coefficients. 

5. Conclusion 

We can sum up the Haar wavelet transform by following steps: 

Convert the image into matrix format (I). 

Calculate the row and column transformed matrix (T) using  

T = WT I W. The transform should be relatively sparse 

Select the threshold value δ and replace any value of T less than δ with a zero. 
We will receive a sparse matrix which is denoted as S. 

To get our reconstructed matrix R from matrix S, we use equation  
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I = (WT)-1TW-1 

Because the inverse of an orthogonal matrix is equal to its transpose, we 
modify the equation as : R = W S W-1. 

If δ = 0 then S  = T therefore R = I. This is called lossless compression. 

If δ > 0, some of components of T is set to zero, some original data to be lost, 
the reconstructed image is distortion. This is called lossy compression. 

We should choose δ carefully so that the compression is maximized while 
distortion of the reconstructed image is minimized. 

The compression ratio is measured by the the ratio of nonzero entries in the 
transformed matrix T  to the number of nonzero entries in the compressed matrix S. 
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