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Abstract. Let (R,m) be a commutative Noetherian local ring the maximal ideal m

and A an Artinian R-module with Ndim A = d. For each system of parameters x =

(x1, ..., xd) of A, we denote by e(x,A) the multipility of A with respect to x. Let n =

(n1, n2, ..., nd) be a d-tuple of positive integers. The paper concerns to the function of

d-variables

I(x(n);A) := R(0 :A (x
n1
1 , ..., x

nd
d )R)− e(xn11 , ..., xndd ;A),

where R(−) is the length of function. We show in this paper that this function may be
not a polynomial in the general case, but the least degree of all upper-bound polynomials

for the function is a numerical invariant of A. A characterization for co Cohen-Macaulay

modules in term of this new invariant is also given.
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1. Introduction

Throughout let (R,m) denote a commutative Noetherian local ring with the max-

imal ideal m and A an Artinian R-module with Ndim A = d > 0. For each system of

parameters x = (x1, ..., xd) for A, we denote by e(x;A) the multiplicity of A with respect

to x in the sense of [3]. It has been shown by Kirby in [8] that there exist q(n) ∈ Q[x]
and n0 ∈ N such that R(0 :R (x1, ..., xd)

nA) = q(n), ∀n n0. It is very important that

the degree of q(n) equals d and if ad is the lead coefficient of q(n) then ad · d! agrees with
e(x;A).

Let n = (n1, ..., nd) ∈ Nd and consider
I(x(n);A) := R(0 :A (x

n1
1 , ..., x

nd
d )− n1 · · ·nd · e(x;A)

as a function on n1, ..., nd. As shown in Example 3.7, this function, may be not a polynomial

on n1, ..., nd (even when n large enough). The aim of this paper is to show that the

above function is still interesting to investigate. First, the least degree of all polynomials

bounding this function from above is a numerical invariant of A. Moreover, this invariant

carries informations on structure of A. The existence of our invariant is proved in the

third section. But before doing this, in the second section, we recall basic terminologies

and resuls which are needed later. Some relations between the new invariant with local

homology modules are presented in the last section.
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2. Preliminaries

In this section, K is a nonzero Artinian R-module.

2.1. The residuum, residual length and width of Artinian modules

We devote this subsection to recall some basic terminologies and results from [11]

and [13].

Let K =
h

i=1

Ci be a minimal secondary representation of K. Set

pi = 0 :R Ci(∀i = 1, ..., h), Att (K) = {p1, ..., ph} , K0 =
pi∈Att (K)−{m }

Ci.

Then Att (K) and K0 are independent of the choice of minimal secondary representation

for K. Note that K/K0 has finite length. This length is called the residual length of K

and denoted by R (K).

An element a ∈ R is called K-coregular element if K = aK. The sequence of

elements a1, ..., an of R is called a K-cosequence if 0 :K (a1, ..., an)R W= 0 and ai is

0 :K (a1, ..., ai−1)R-coregular element for every i = 1, ..., n. We denote by Width(K)

the supremum of lengths of all K-cosequences in m. It should be mentioned that a ∈ R is
K-coregular if and only if a W∈

p∈Att (K)
p.

An element a ∈ m is called pseudo-K-coregular if a W∈
p∈Att(K)−{m}

p.We define the

stability index s = s(K) of K to be the least integer i 0 such that miK = mi+1K.

Note that msK = K0, and that a
sK = K0 for each pseudo-K-coregular element a ∈ m.

2.2. The theory of Noetherian dimension, multiplicity for Artinian modules

We continue in this subsection by reviewing basic definitions and properties on

Noetherian dimension and multiplicity of Artinian modules. The interested reader should

consult to [9] and [3] for more details.

The Noetherian dimension of K, denoted by N− dimRK, is defined inductively as
follows: when K = 0, put N − dimRK = −1. Then by induction, for an integer t 0,

we put N − dimRK = t if N − dimRK < t is false and for every ascending sequence

K0 ⊆ K1 ⊆ . . . of submodules of K, there exists n0 such that N − dimR(Kn+1/Kn) < t

for all n > n0.

A system x = (x1, . . . , xt) of elements in m is called a multiplicity system of K if

R(0 :K (x1, . . . , xt)R) <∞. Assume that N− dimRK = d, then a multiplicity system of

K is called a system of parameter (s.o.p for short) for K if t = d.

Let x = (x1, . . . , xd) is a multiplicity system of K. The multiplicity e(x;K) of K

with respect to x is defined inductively as follows: when d = 0, we put e(∅;K) = R(K).

Let d > 0, then we put

e(x;K) = e(x2, . . . , xd; 0 :K x1)− e(x2, . . . , xd;K/x1K).
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3. Main results

The following proposition gives an upper bound polynomial for the function I(x(n);A).

3.1. Proposition. Let x be an s.o.p of A and n = (n1, ..., nd) ∈ Nd. Then

I(x(n);A) n1 · · ·ndI(x1, ..., xd;A).

Proof: By [6], Lemma 2

R(0 :A y
m) m R(0 :A y),∀y ∈ A,∀m ∈ N.

Using an induction on d, we get

R(0 :A (x
n1
1 , ..., x

nd
d )R n1 · · ·nd R(0 :A (x1, ..., xd)R)). (1)

On the other hand, according to [3] (3.8),

e(x(n);A) = n1 · · ·nde(x1, ..., xd;A). (2)

The proposition then comes from (1) and (2).

The proposition 3.1 leads to an immediate consequence as follows.

3.2. Corollary. If I(x(n);L) is a polynomial, then it is linear in each ni, i = 1, ..., d.

The main result of this section is the following.

3.3. Theorem. Let x = (x1, ..., xd) be a s.o.p of A. Then, the least degree of all

polynomials in n1, ..., nd bounding the function I(x
n1
1 , ..., x

nd
d ;A) from above does not

depend on x.

Proof: Denote by R the m-completion of R. Because A is Artinian R-module, it can be

considered as an R-module. Note that for each element a ∈ R and each element x ∈ A,
we can see that ax and ax are the same, where a is the image of a by the canonical

homomorphism R −→ R. On the other hand, when we regard this R-module as R-module

by means of the natural map R −→ R, then we recover the orginal R-module structure on

A. Furthermore a subset of A is an R-submodule if and only if it is an R-submodule (see

[2] (10.2.9)). It is easy to see that, for each s.o.p (x1, ..., xd) of R-module A, (x1, ..., xd)

forms a s.o.p of R-module A. Furthermore,

(0 :A (x1, ..., xd)R) = (0 :A (x1, ..., xd)R)

and therefore,

I(xn11 , ..., x
nd
d ;A) = I(x1, ..., xd;A).

Hence, it suffices to prove our theorem with assumption that R is complete. In oder to

prove this theorem, we need three lemmas in which we always assume that R is complete.
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3.4. Lemma. Let x be a s.o.p of A. Then, there exists k ∈ N such that
mk ⊆ xA+AnnRA.

Proof: Taking l ∈ N such that
mlR ⊆ AnnR(0 :A (x1, ..., xd)R).

Denote by −∨ := HomR(−, E(R/m)) the Matlis dual functor, where E(R/m) is injective
hull of R/m. Then, A∨ is a Noetherian over R and we have

mlR ⊆ AnnR(0 :A (x1, ..., xd)R)∨ = AnnR(A∨/(x1, ..., xd)A∨)
⊆ AnnR(A∨/(x1, ..., xd)A∨) = (x1, ..., xd)R+AnnR(A∨)

= (x1, ..., xd)R+AnnR(A).

Since R is Noetherian, there exists t ∈ N such that
((x1, ..., xd)R+AnnR(A))

t

⊆ ((x1, ..., xd)R+AnnR(A)).
To finish our claim one just set k = tl.

3.5. Lemma. Let x1, x2, ..., xd and y1, y2, ..., yd be two s.o.p’s ofR with x1 = y1, ..., xd−1 =
yd−1. Let n2, ..., nd ∈ N. Then there exists a pseudo-A-coregular element, say z1, such that,
for all n1 ∈ N,

(xn11 , x
n2
2 , ..., x

nd−1
d−1 , x

nd
d )R = (z

n1
1 , x

n2
2 , ..., x

nd
d )R (3)

and

(yn11 , y
n2
2 , ..., y

nd−1
d−1 , y

nd
d )R = (z

n1
1 , y

n2
2 , ..., y

nd−1
d−1 , y

nd
d )R. (4)

Proof: By Lemma 3.4 we can write

mk ⊆ (x1, xn22 , ..., xnd−1d−1 , x
nd
d .y

nd
d )R+AnnR(A) (5)

for some k ∈ N. Let A =
h

i=1

Si be a minimal secondary representation of A. Then

AnnR(A) = 0 :R

h

i=1

Si =
h

i=1

0 :R Si =
p∈Att(A)

p. (6)

It goes from (5) and (6) that

mk ⊆ (x1, xn22 , ..., xnd−1d−1 , x
nd
d .y

nd
d )R+

p∈Att(A)
p.

This implies x1R + (x
n2
2 , ..., x

nd−1
d−1 , x

nd
d .y

nd
d )R W⊂

p∈Att (A)−{m}
p. Hence, by Theorem 124

in [7], there exists z ∈ (xn22 , ..., xnd−1d−1 , x
nd
d .y

nd
d )R such that z1 := x1 + z /∈

p∈Att (A)−{m}
p.

We have now z1 is a pseudo-A-coregular. Furthermore, for each n1 ∈ N, one can find
cn1 ∈ (xn22 , ..., xnd−1d−1 , x

nd
d .y

nd
d )A such that z

n1
1 = xn11 + cn1 . This yields the equations (3)

and (4).
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3.6. Lemma. Let x = (x1, ..., xd) be an s.o.p. for A. Let t ∈ N such that mt ⊆
xA+ AnnRA. Then, for any s.o.p y = (y1, ..., yd) of A with x1 = y1, ..., xd−1 = yd−1 and
every n = (n1, ..., nd) ∈ Nd, it holds

I(x(n);A) tI(y(n);A).

Proof: We proceed induction on d. For d = 1, by [6] (Lemma 2),

I(x(n);A) = R(A/x
n1
1 A) = R(A/(x

n1
1 A+AnnRA)A)

R(A/m
n1tA) R(A/y

n1t
1 A) t R(A/y

n1
1 A) = tI(y(n);A).

Assume that d > 1 and our assertion is true for all Artinian R-module of N-dimension

smaller than d. Lemma 3.5 allow us to suppose that x1 is an pseudo-A-coregular. Conse-

quently, for every n1 ∈ N, R(L/x
n1
1 L) <∞ and

e(xn22 , ..., x
nd−1
d−1 , x

nd
d ;L/x

n1
1 L) = 0; e(y

n2
2 , ..., y

nd−1
d−1 , y

nd
d ;L/x

n1
1 L) = 0.

Therefore,

e(xn11 , x
n2
2 , ..., x

nd−1
d−1 , x

nd
d ;A) = e(x

n2
2 , ..., x

nd−1
d−1 , x

nd
d ; 0 :A x

n1
1 )

and

e(yn11 , y
n2
2 , ..., y

nd−1
d−1 , y

nd
d ;A) = e(y

n2
2 , ..., y

nd−1
d−1 , y

nd
d ; 0 :A y

n1
1 ).

Hence

I(x(n);A) = I(xn22 , ..., x
nd−1
d−1 , x

nd
d ; 0 :A x

n1
1 ) (7)

and

I(y(n);A) = I(yn22 , ..., y
nd−1
d−1 , y

nd
d ; 0 :A y

n1
1 ) = I(y

n2
2 , ..., y

nd
d ; 0 :A x

n1
1 ). (8)

Because

mk ⊆ (xn11 , xn22 , ..., xndd )A+AnnRA ⊆ (xn22 , ..., xnd−1d−1 , x
nd
d )A+AnnR(0 :A x

n1
1 ),

we can apply the inductive hypothesis for 0 :A x
n1
1 to obtain

I(xn22 , ..., x
nd−1
d−1 , x

nd
d ; 0 :A x

n1
1 ) tI(yn22 , ..., y

nd
d ; 0 :A x

n1
1 ). (9)

The proposition now follows from (7), (8) and (9).

We now already to prove our main theorem.

Let y = (y1, ..., yd) be arbitrary s.o.p of A. Then we can connect x and y by a

sequence of not more than (2d + 1) s.o.p’s of A with the property that two consecutive

ones differ by at most one element. By repeated applications of Lemma 3.6, one can find

natural numbers t1, t2 such that, ∀n ∈ Nd,

I(x(n);A) t1I(y(n);A) and I(y(n);A) t2I(x(n);A).
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The proof is then complete.

The above theorem means that the least degree of all polynomials bounding from

above I(x(n);A) is a numerical invariant of A. From now on, we denote this invariant

by ldR(A) or ld(A) (if there is no confusion). We stipulate that the degree of the zero-

polynomial is equal to −∞.
We close this section by an example in which we can easily calculate the invariant

ld. Besides, it shows that the function R(0 :A (x
n1
1 , ..., x

nd
d )R) may be not a polynomial

even when n1, ..., nd large enough.

3.7. Example. Let B = k[[Y1, Y2, Y3]]/(Y1Y3, Y2Y3), where k is a field and We denote

by x1, x2 the natural images of Y1 + Y3, Y2 + Y3 in B, then x = (x1, x2) forms a system of

parameters for the Noetherian module B (as B-module). It can be verified that

B(B/(x
n1
1 , x

n2
2 )B) = n1n2 · e0(x1, x2;B) +min{n1, n2},

where e0(x;B) is the Hilber-Samuel multiplicity of Noetherian B with respect to x. Denote

by n the maximal ideal of the local ring B and E the injective hull of B/n. Set B∨ :=
HomR(B;E), the Matlis dual of B. Then, B

∨ is an Artinian B-module and x is also a
system of parameters for B∨. It goes from basic facts of Matlist dual that

B(B/(x
n1
1 , x

n2
2 )B) = B((B/(x

n1
1 , x

n2
2 )B)

∨) = B(0 :B∨ ((x
n1
1 , x

n2
2 )B).

Hence,

B(0 :B∨ (x
n1
1 , x

n2
2 )R) = n1n2 · e(x1, x2;B) + min{n1, n2}.

Moreover, because

B(B/(x1, x2)
tB) = B((B/(x1, x2)

tB)∨) = B(0 :B∨ (x1, x2)
tB),

for all t ∈ N, we get e0(x;B) = e(x;B∨) by [10] (Formular 14.1 page 107) and [3] (4.4).
Accordingly,

I(xn11 , x
n2
2 );B

∨) = min{n1, n2}.
Therefore, ld(B∨) = 1.

4. Connect to local homology modules

We devote this section to show some ralations between the invariant ld and local

homology modules. But let us first recall the definition of local homology which is first

introduced in [5].

4.1. Definition.Let I be an ideal in R and let i is a non-negative integer. Then the

R-module lim←−
t

TorRi (R/I
t;A) is called ith- local homology module of A with respect to I

and denoted by HI
i (A).

Denote by R be the m-completion of R. As A is Artinian over R, for all i 0 and

t > 0, on can check that TorRi (R/I
t;A) is an Artine R-module. Thus TorRi (R/I

t;A) can

be regarded as an R-module and therefore Hm
i (A) too. It have been shown in [5] that, for

all i 0, Hm
i (A) is Noetherian over R and H

m
i (A)

∼= HmR
i (A) as R-modules.
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4.2. Lemma. Let s = s(A) be the stability index of A. Then Hm
0 (A) = A/m

sA.

Proof: Hm
0 (A) = lim←−

t

TorR0 (R/m
t;A) = lim←−

t

(R/mt ⊗R A) = lim←−
t

(A/mtA) = A/msA.

4.3. Lemma. Assume that R(H
m
i (A)) < ∞ for all i < d. Let k ∈ N be such that

mkHm
i (A) = 0,∀i = 0, ..., d− 1. Then there holds

(0 :A xR)− e(x;A) =
d−1

i=0

d− 1
i

R(H
m
i (A))

for all system of parameters xR contained in mk2
d

Proof: It suffices to prove our lemma in the case R is complete. We make induction on

d. When d = 1, and mkHm
0 (A) = 0 and let x = x1 is a s.o.p of A with x1R ⊆ m2k. As

0 = mkHm
0 (A) = m

k(A/msA), we have mkA ⊆ msA and thus have k s by the definition

of the stability index.

R(0 :A xR)− e(x;A) = R(A/x1A) R(A/m
sA) = R Hm

0 (A) . (10)

On the other hand, choosing r ∈ N such that mr ⊆ x1R+AnnR(A), then

R(0 :A xR)− e(x;A) = R(A/x1A) = R A/((x1R+AnnR(A))A)

R(A/m
rA) R(A/m

sA) = R Hm
0 (A) . (11)

By (10) and (11), our assertion have proved in the case d = 1.

Now suppose that d > 1 and our statement is true for all Artine R-module of

N − dim smaller than d. Let x = (x1, ..., xd) be arbitrary s.o.p contained in m
k2d . By

Lemma 3.5, we can assume that x1 is a pseudo-A-coregular. Let us consider two following

exact sequences

0 −→ x1A −→ A −→ A/x1A −→ 0 (12)

and

0 −→ (0 :A x1R) −→ A
x1−→ x1A −→ 0. (13)

Because R(A/x1A) < ∞ we get Hm
i (A/x1A) = 0,∀i > 0. The exact sequence (12) then

implies that

Hm
i (A)

∼= Hm
i (x1A),∀i = 1, ..., d− 1. (14)

By virtue of [5] (4.2), the exact sequence (13) yields the long exact sequence

· · · −→ Hm
i (A) −→ Hm

i−1(0 :A x1) −→ Hm
i−1(A)

x1−→ Hm
i−1(A) −→ · · ·

−→ Hm
1 (A) −→ Hm

0 (0 :A x1) −→ Hm
0 (A)

x1−→ Hm
0 (x1A) −→ 0. (15)

By our assumption, x1H
m
i (A) = 0,∀i < d, there is an isomorphism

Hm
0 (0 :A x1)

∼= Hm
0 (A)
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and for each i ∈ {1, ..., d− 1}, there is a short exact sequence

0 −→ Hm
i (A) −→ Hm

i−1(0 :A x1) −→ Hm
i−1(A) −→ 0.

Accordingly,

m2kHm
j (0 :A x1) = 0,∀j = 0, ..., d− 2 (16)

and moreover,

R Hm
i−1(0 :A x1) = R Hm

i (A) + R Hm
i−1(A) <∞, ∀i = 1, ..., d− 1 and

R Hm
0 (0 :A x1) = R Hm

0 (A) <∞. (17)

Since

(x2, ..., xd)R ⊆ mk2d = m2k.2d−1 ,
(16) and (17) enable us to apply the inductive hypothesis for the s.o.p (x2, ..., xd) of R-

module (0 :A x1) and then obtain

R(0 :(0:x1) (x2, ..., xd)R)− e(x2, ..., xd; 0 :A x1) =
d−2

j=0

d− 2
j

R(H
m
j (0 :A x1)) =

d−1

i=0

d− 1
i

R(H
m
i (A)).

The inductive step completes by the observation that

R(0 :A x)− e(x;A) = R(0 :(0:Ax1) (x2, ..., xd)R)− e(x2, ..., xd; 0 :A x1)
+ e(x2, ..., xd;A/x1A)

= R(0 :(0:Ax1) (x2, ..., xd)R)− e(x2, ..., xd; 0 :A x1)

as N− dim(A/x1A) = 0.

4.4. Lemma. Let x be a s.o.p of A. Let m = (m1, ...,md), n = (n1, ..., nd) ∈ Nd with
mi ni,∀i = 1, ..., d. Then

I(x(m);A) I(x(n);A).

Proof: As usually, we can assume addition that R is complete. Moreover, because the

function I(x(n);L) is not dependent on oder of x1, ..., xd, it reduces our lemma to the case

m1 = n1, ...,md−1 = nd−1,md nd. We do induction on d. For d = 1,

I(x(m);A) = (A/xm1
1 A) (A/xn11 A) = I(x(n);A).

In the next step, we can apply the same method in proof of Lemma 3.6 and then comlete

the inductive progress.
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4.5. Corollary. Let x be arbitrary s.o.p of A. Then there holds

R(0 :A xR)− e(x;A)
d−1

i=0

d− 1
i

R(H
m
i (A)).

Proof: If R(H
m
i (A)) = +∞ for some i ∈ {0, ..., d − 1}, then we have nothing to prove.

When R(H
m
i (A)) < ∞,∀i < d we can find k ∈ N such that mk(Hm

i (A)) = 0,∀i < d.

Taking n1, ..., nd ∈ N with ni k2d,∀i = 1, ..., d. Then

R(0 :A xR)− e(x;A) R(0 :A (x
n1
1 , ..., x

nd
d )R)− e(xn11 , ..., xndd ;A)

=
d−1

i=0

d− 1
i

R(H
m
i (A))

by Lemma 4.4 and Lemma 4.3.

4.6. Theorem. ld(A) = −∞⇐⇒ Hm
i (A) = 0,∀i < d.

Proof: If Hm
i (A) = 0,∀i < d then it follows from Corollary 4.5 that ld(A) = −∞.

We prove the inverse by induction on d. For d = 1 and let x = x1 be a s.o.p of A.

Then, because ld(A) = −∞, we have R(0 :A x1)− e(x1;A) = 0. By virtue of [3] (5.3), it
implies x1 is A-coregular so that

A = xk1A ⊆ mkA ⊆ A,∀k ∈ N.

Thus A = mkA,∀k ∈ N and so Hm
0 (A) = A/m

S(A)A = 0 by Lemma (4.2). Therefore our

statement have proved for the case d = 1.

Assume that d > 1 and our assertion is true for all Artinian R-module of N− dim
smaller than d. Let x = (x1, ..., xd) be a s.o.p of A. As ld(A) = −∞, then R(0 :A
xR)− e(x;A) = 0. By [3] (5.3), x1 is A-coregular. The exact sequence 0 −→ (0 :A x1) −→
A

x1−→ A −→ 0 then generates the long exact sequence

· · · −→ Hm
i (0 :A x1) −→ Hm

i (A)
x1−→ Hm

i (A) −→ Hm
i−1(0 :A x1) · · ·

−→ Hm
0 (0 :A x1) −→ Hm

0 (A)
x1−→ Hm

0 (A) −→ 0. (18)

As x1 is A-coregular,

0 = R(0 :A (xR))− e(x;A) = R(0 :(0:x1) (x2, ..., xd)R)− e(x2, ..., xd; 0 :A x1)

and thus ld(0 :A x1) = −∞. Now we can apply the inductive hypothesis for (0 :A x1) to
have Hm

i (0 :A x1) = 0,∀i = 0, ..., d − 2. By this, the long exact sequence (18) gives an
isomorphism

Hm
i (A)

x1−→ Hm
i (A),∀i < d.
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Hence, for every i < d, Hm
i (A) = x1H

m
i (A) and consequently, ∀k ∈ N,

Hm
i (A) = x

k
1H

m
i (A) ⊆ mkHm

i (A).

This deduces that

Hm
i (A) ⊆

k 0

mkHm
i (A) = 0,∀i < d

by [5] (3.1) and the induction is finished.

Co Cohen-Macaulay modules is introduced in [17]. This class of Artinian modules

is in some sense dual to the well known theory of Cohen-Macaulay modules. We are going

to give a character for co Cohen- Macaulay modules in term of the invariant ld.

4.7. Corollary. The following conditions are equivalent:

i) there exists a s.o.p x of A such that R(0 :A xA) = e(x;A),

ii) ld(A) = −∞,
iii) for arbitrary s.o.p x of A, we have R(0 :A xA) = e(x;A),

iv) there exists a s.o.p of A which is also a A-cosequence,

v) Every s.o.p of A is also a A-cosequence,

vi) A is co Cohen-Macaulay, that is N− dimRA =WidthA,
vii) Hm

i (A) = 0, for all i = 0, ..., d− 1.
Proof: The statements (i)⇐⇒ (ii) and (ii)⇐⇒ (iii) yield from the definition of ld.

(iii)⇐⇒ (vii) is nothing else Theorem 4.6.

(i)⇐⇒ (iv) and (iii)⇐⇒ (v) are essentially Theorem 5.3 in [[CN]].

In oder to prove (v) ⇐⇒ (vi) we first recall that WidthR(A) N − dimR(A) by
[17] (2.11). Observe that every A-cosequence is also a subset of a system of parameter of

A (see [17] (2.14)). This proves (v) =⇒ (vi). The inverse is clear by definition of Width

and the previous observation.
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