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Abstract. Let X be random variable taking values 0,1, a with equal probability 1/3
and let X3, Xo,... be a sequence of independent identically distributed (i.i.d) random
variables with the same distribution as X. Let p be the probability measure induced by
S =3"7,37"X,. Let a(s) (resp. a(s),a(s)) denote the local dimension (resp. lower,
upper local dimension) of s € supp p.

Put

@ = sup{a(s) : s € supp p}; @ = inf{a(s) : s € supp p};
E ={a: a(s) = a for some s € supp pu}.

When a = 0 (mod 3), the probability measure y is singular and it is conjectured that for
a = 3k (for any k € N), the local dimension is still the same as the case k = 1,2. It means
E=]1- Loli(gag , 1], for a,b depend on k. Our result shows that for k = 3 (a = 9),a = 1,
a=2/3and E = [2,1].

1. Introduction

By a Probabilistic system we mean a sequence Xp, Xo, ... of i.i.d random variables
with the same distribution as X, where X is a random variable taking values a1, as, ..., G,
with probability p1, ps, ..., Pm, respectively.

Let S =522, p'X;, for 0 < p < 1, then the probability measure x induced by S,
ie.,

pu(A) = Prob{w : S(w) € A}

is called the Fractal measure associated with the probabilistic system.

It is specified two interesting cases.

The first case is when m = 2,p; = po = 1/2 and a; = 0,a2 = 1. In this case the
fractal measure p is known as ”Infinite Bernoulli Convolutions”. This measure has been
studied for over sixty years but is still only partial understood today.
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The second case of interest is when m = 3,p =p; = ps = p3 = 1/3 and a; = 0,a2 =
1,a3 = a. Some authors have found @, « and E for some concrete values of a for which
w is singular. But for each of them, the way to find @, a and FE is quite different. It is
conjectured that the way to find them in the general case is dificult.

Let us recall that for s € supp u the local dimension a(s) of p at s is defined by

. log u(Bn(s))
— lim —=fAPRV))
a(s) hig)lJr logh

(1)

provided that the limit exists, where By, (s) denotes the ball centered at s with radius h. If
the limit (1) does not exist, we define the upper and lower local dimension, denoted @(s)
and a(s), by taking the upper and lower limits, respectively.

Denote

@ = sup{a(s) : s € supp u} ; a =inf{a(s) : s € supp u},

and let
E ={a:a(s) = a for some s € supp p}

be the attainable values of a(s), i.e., the range of function « definning in the supp p.
In this paper, we consider the interest second case with a = 9 (¢ = 0 (mod 3)).
Our result is the following.

Main Theorem. Fora =9, a=1,a = % and F = [%, 1].

The paper is organized as follows. In Section 2, we establish some auxiliary results
are used to prove the formula for calculating the local dimension. In Section 3, we prove
the maximal sequences, it is used to find the lower local dimension. The proof of the Main
Theorem will be given in the last section.

2. The formula for calculating the local dimension

Let X1, Xo,... be a sequence of i.i.d random variables each taking values 0,1,9
with equal probability 1/3. Let S =3 ., 37°X;, S,, = Y_i"; 37°X; be the n-partial sum
of S, and let u, u, be the probability measures induced by S,.S,, respectively. For any
s=>02,3""z; € supp p,x; € D: = {0,1,9}, let s, = > | 37‘x; be its n-partial sum.

Let

(sn) = {(z1, 22, ....,x,) € D" : 23_%1- = Sp}-
i=1

Then we have
tin () = #(3,)3~" for every n, (2)

where #X denotes the cardinality of set X.
Two sequences (1,22, ...,T,) and (z},25,...,x)) in D™ are said to be equivalent,

denoted by (z1,T2,... ,2n) & (¥, 25, ..., x)) if Y0 37w, = | 37"z, We have
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2.1. Claim. (i) For any (z1,22,...,%,), (@},25,...,2),) in D" and s, = >, 3 'z,

sh,=>"" | 37"}, we have |s, — s},| = k37" for some k € N and z,, — z/, = k (mod 3).

n

(ii) Let s, < s/, < s’ " be three arbitrary consecutive points in supp . Then either s/, —s,
or s), — s;, is not 3 forz—123andforeveryn€N

(iii) Let s,, s, € supp U and s, — s, = 3n 7. Then s, = s, 1 + 5 is the unique

representation of s, through points in supp p,—1 and s/, = s,,—1 + == 3n ors,=s_,+ 3%
or both of them, where s,,_1,s],_; in supp fin,—1.

(iv) For any sy, s}, € supp p, such that s, —s), = %. Then s/, = s/, _ 1 + == is the unique

representation of s/, through points in supp pn—1 and Sp = Sp—1+ 3 OF Sp = sy + 3%

or both of them, where s,,_1,s,,_;,s/_; in Supp fin_1.

Proof. 1t is proved similarly as proof of Claim 2.1, 2.2 in [11].

2.2. Corollary. (i) Let s;,41 € supp pn+1 and Sp41 = Sp + 3,1%, Sp, € supp Wn,. We have

#<Sn+1> - #<Sn>af0r every n > L.

(ii) For any sy, s, € supp pn, if s, — s, = 7= or s, — s, = =, then s,,s), are two

consecutive points in supp pn,.
(iii) Let sy, s), € SUPP fn, if sp, — s, = 5= then #(s,) < #(s,).
Proof. 1t follows directly from Claim 2.1.

2.3. Lemma. For any s, s, € supp pin, if s, — s, = 3n , then either both of Sn, Sh, have

two representations through points in supp fin—1 Or Sy = sp_1 + &, s, = 5, | + 3%, for

Tn € D, 8p_1, 5;1—1 in SUpp fin—1-
Proof. Assume on the contrary, then there are the following cases.

Casel.Ifsnzsn 1+ 3+ —s;{1—|—3n,’n—sn1+—(1).
Then s], _;—si_; = z2r. By Cla1m2 1(iv) si_y = s _o+5a—. It implies s}, = s}, _;+

n—1

where s},_; = si_, + 521, a contradiction to (1).

Case 2. Ifsn—sn 1—1———3;{ 1_|_3£m sl =s 1_,_3%(2)_

Then s,,—1—58),_1 = 3n =—. By Claim 2.1 (iii) $;,—1 = Sp— 2—}—3" r. It implies 57, = s}, | +3%,

where s%_; = s,_2 + 31, a contradiction to (2).

Case 3. Ifsn—sn 1+ o, Sp =8,y o = Si_ 14_3%(3).
Ifs), ,=s,_ 2+— then

3n 1- 3n
Sn = Sh_1+3%, where s%_; = s)_,+37, a contradiction to (3). Hence s, _; = s/I_,+=.

2
It implies s,,_o — s/ _, = 3n .

Then sn_l—sg 1= 3n =—. By Claim 2.1 (iii) 8,1 = Sp—2+ =7

Ifs,_9=8,_ 3—1—3" s, then thereis s/, o = s, 3+3n -. Hence sn_gzsﬁb,g—i—?ﬂ%.

Thus, by repeating this argument then there are two points s1, s} € supp u1, such that

2

51 — 81 = 3, a contradiction.

Case 4. If 5,, = s,_ 1+3n, n:S;l_l—l—B%:sx_l—i-%(él).
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3n =—. By Claim 2.1 (iii) 85,1 = Sp— 2+3n IS =l 2+3%,then

Sp = Sp_ 1+3%, where s¥_, = s _ 2—1—3n—_1, a contradiction to (4). Hence sn 1= Z,2+3—n

"
Then sp,—1—5,_1 =

is the unique representatmn of s/!_; (5). Then we have sn 2 — Si_y = =z, by Claim 2.1

(iii) Sp—2 = Sp—3 + gr=z. Then there is s, 5 = sp_3 + 5n=7. It implies sl_; = s),_5 + o

a contradiction to (5). So this case does not happen.
Observe that, from Case 3 and Case 4 there are not the cases

0

Sp = 8p_1+ — ,s;:s;_l—i——

3n 3n

and 9
3" 3n

The lemma is proved.

2.4. Corollary. (i) Let s,,,s], € Supp py,, if s, — s}, = 5, then #(s,) < #(s},).

n

(ii) For any s, < s, < si are three consecutive points in supp pu, and s, — s, = 3% then
L= Sy # =
Proof. (i) It follows directly from Lemma 2.3 and Corollary 2.2(iii).

(ii) It follows directly from Lemma 2.3 and Claim 2.1 (ii).

2.5. Lemma. Let s, s, € supp pn, if sp, — s, = 3% then

n

Hn(7) < n+1
Nn(sn) A 2

Proof. We will prove the inequality by induction. Clearly the inequality holds for n = 1.
Suppose that it is true for all n < k — 1. We consider the case n = k.
By Claim 2.1 (iii) and Corollary 2.2 (i), we have #(sx) = #(sk—1), where

Sk = Sk—1 + o7, Sk—1 € SUPD Mk—1-

1
3k’
We consider the following cases.

Case 1. If s = s;,_1 + 3% is the unique representation of s through point in supp
pk—1. Then #(s}.) = #(sk—1). Therefore

Case 2. If s}, has two representations through points in supp pr—1,

9

= Sp_1 + 3k

, 0
Sk :Sk—l‘i‘@
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Then sp_1 — s}, = % By Lemma 2.3, either

Tk Tk
Sk—1 = Sk—2 + 1 and s, = sj_o + pramg (1)
or
_ o 5, 9
Sk—1 = Sk—2 + h1 k-2 + 31
and
" 9

If (1) happens, then

#(sp—1) = #(sK—2), #<5§g—1> = #<5§g—2> and sp_o — 32:—2 = 3k—2"

By inductive hypothesis, we have

) o) H#L) B AL ko1 k4

Hlsn) #(sK—1) - #(sk—2) St

If (2) happens, then
#(sk—1) = #(sk—2) + #(s\_2),

#(sk_1) = #(sk_2) + F#(sk_2)-

By inductive hypothesis, we have

#(s) _ #lsr—1) +#(sh1) -
#(s1) #(sk-1) #(sk—2) + #(s_y)

<14 ST lHn) + H# (s ,)] k-1 k4l

H#(sp_o) +#(sll ) 2 2

The lemma is proved.

2.6. Lemma. Let sy, s, € supp pn, and s, — s, = 3% We always have
:un(s;z) <.
pin(Sn)

r_ 3

Proof. Since s, — s;,, = 5%, by Lemma 2.3, we have two following cases.

<l4d—=—.

37

Case 1. Both of s, s], have the unique representations through points s,,_1,s],_;

in supp fn—1, respectively. Then

#(sp) = #(Sn—1)7#<3%> = #(«%—1) and sp—1 — 3;—1 =

3n—1"
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By Lemma 2.5, we have

Case 2. Both of s, s/, has two representations through points in supp p,—1,

0 9 0 9
SnZSn_1+3—n :3;;_1“‘3_”,5;1:5%_1“’3_”:5;7{/_1‘1‘3_”-

Then sp—1 — S}, = sji_y — i1 = z==r. By Lemma 2.5, we have

< (n—1)+1
2

Blsn) (s ) < BTN FL

Hence, we have
#(sn) _ #sn1) +#{sn1)

#(sn)  H#(sn—1) +H#(sh_1)

%[#(.Sn_ﬁ + #(sh_1)]
F#(sn—1) +#(sh_1)

< n. (4)

N

<

|3

The lemma is proved.
Using Lemma 2.5, 2.6 we will prove the following lemma, which is used to establish

a useful formula for calculating the local dimension.

. . ;o
2.7. Lemma. For any two consecutive points s, and s,, in supp f,, we have

Proof. By (2) it is sufficient to show that iéi?i < n. We will prove the inequality by

induction. Clearly the inequality holds for n = 1. Suppose that it is true for all n < k.
Let spy1 > s)_, be two arbitrary consecutive points in supp px11. Write

Tk+1
Sk+1 = Sk + pysE Sk € Supp g, Tg+1 € D.

We consider the following cases for x4

Case 1. If 11 =1, then s 1 = sk—l—#. By Corollary 2.2 (i) #(sg+1) = #(sk).
We have s, = sj, + gr. Assume that s}, has an other representation

9
Skt = Sk g Sk € SUPP k-
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Then #(s},_ 1) < #(sk)+#(s},) and s, —s}, = 2. By Lemma 2.5, we have #(s},) < k#(sx).
Thus,
#(Shar) _ #sk) + #(s) _ (L4 F)#(sk)

o) © Fe) S ey TR

Case 2. If 141 =0, then sg411 = sk + 3;@%-

a) If sxy1 has not any other representation. Then #(sk11) = #(sk).

For any sj,, = s + % < Sk+1 = Sk. 1t implies s}, < sp.

Let s, € supp p be the biggest value smaller than s; then s, < s, are two
consecutive points in supp py and si — s), # 33k Then there are three following cases.

If s;, = s}, + 3¢ then s}, = s}, + 7. By Corollary 2.2 (i) #(s},,1) = #(s},)-

Therefore
#(ske1) _ #lsk) _
#(shy1)  Fsp)

The case s = s}, + 2k is proved similarly to the case s = s} +

If 54, — 82 >
H{shr) = #(sh).

Therefore

<k<k+1.

1
3k

9 . . . /
3k , then s, | = s} + sr+T 1S the unique representation of s; ;. Hence,

(k1) _ #(sk) <k<k+1.

#(skr1)  F#sk)
9

b) If 5141 has an other representation sy1 = s}, + 557

bl) If s}, si are two consecutive points in supp py, then let s} < s} in supp py are
two consecutive points. By Corollary 2.4 (ii) we have two cases

sy, — sp > or s, — Sp = —.

3k 3k

If s) — s >
Therefore

=, then s}, = s}, + grrr. By Corollary 2.2 (i) #(s}_,) = #(s}).

#{sk1) _ #(sp) + #(sk)
#<Sz+1> #(s},)
If s), — sy = 3k, then #(s;) < #(sy) and s}, | = 53 + ?)k% is the unique represen-
tation of s;_ ;. Hence, #(s}_ ) = #(s}). Therefore

<1+k.

(k1) _ #lsp) T H#e) o #se) o #(sk)

= <1 1
() (7 " *

< <1+k.
a6 S T Een ST

b2) Assume that there is s} in supp py and s; € (s}, sk). Then there are two cases.

If s, — 53 = 3k, then sk+1 = s; + #7 SO #(.S;Hl) = #(s3) and #(si) < #(s3). By
Corollary 2.2 (ii), s}, s}, si are three consecutive points in supp py. Therefore

#(Sk+1) _ #(sy) + #(sk) < #(sy) <
#(s}11) #(s}) T #(sk)  #sk)
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If s; — s), = %, then s} = s} + 5. So #(s),,1) = #(s}). Since s} — s}, = 3¢, by
Claim 2.1 (iii) s} = s;_; + 3% Since s — s}, = 3%, by Lemma 2.3 we have following two

cases. If both of s}, s, have two representations through points in supp g1,

0o 9
SkZSk—1+§ Zsk,1+3—k,
/ * 0 1 9
Sk:Sk—l—’_? :Sk_1+3_k'

* o " _
Then sg_1 — 85 1 =81 — Sk_1 = 371~

Hence, by Corollary 2.2 (iii),

#(sk) = #(sk 1) + #(sk_1) = #(sk—1) + #(s_1) = #(sk)-
Therefore, by Lemma 2.5
Bloen) _ Bkt ) _ 2l _ k1

#(8h41) #sp) o #sp) 2

If both of s}, s have the unique representations through points in supp pg—1.

k+1.

Since s} — s = 3%,32 = s 4+ 3%, we have s, = s;_; + 3%. By Lemma 2.3,

1
3F-T- Hence,

#(sk) = #(sk-1), #(sk) = #{sf_1) = #{sk)
and sj,_,,sy—1 are two consecutive points. Therefore

Hlsern) _ #lsh) + #(sn) _ #si0) + #se)
Hofr)  #p) #oi0)

Sk = Sk—1 + 3k It implies sp_1 — s}_, =

<14+(k-1)<k+1.

Case 3. If zj 11 = 9. We assume that s 1 = s+ % is the unique representation
of sk41 through points in supp pr. Then #(skr1) = #(sk)-

Let s € supp px be the smallest value bigger than s; then s, < s} are two
consecutive points in supp pg. Since Ssx+1 = Sk + % is the unique representation of
Sk+1, So we have following two cases.

a) If s}, = sk + 3¢ or s, = sk + =. Then s} | = s} + zerr. S0 #(s} 1) = #(s})-

Therefore
#{sk41) _ #(sk)
#(s)i1)  H#sp)

b) s}, > sk + 3x. Then we have s}, = s} + g% is the unique representation of

<k<k+1.

Sk+1 through point in supp px, where s} < s are two consecutive points in supp fig.

Then
#(skr1)  F#sk)

H(Shy1)  FH(sE)

<k<k+1.

The lemma, is proved.

The following proposition provides a useful formula for calculating the local dimen-
sion and it is proved similarly as the proof of Proposition 2.3 in [11] and using Lemma
2.7.
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2.8. Proposition. For s € supp u, we have

1 n n
a(s) = lim [1og pin ()|

n—oco mnlogd ’

provided that the limit exists. Otherwise, by taking the upper and lower limits respectively
we get the formulas for @(s) and a(s).

3. The maximal sequence

For each infinite sequence = = (x1,za,...) € D> defines a point s € supp u by

s=S8(z):= i 37"y,
n=1

By Proposition 2.8 the lower local dimension (respestively, the upper local dimen-
sion) will be determined by an element x = (z1,z2,...) € D™ for which #((z1,x2,...))
has the largest value (respestively, the smallest value). This suggests the following defini-
tion.

3.1. Definition. We say that z(n) = (z1,22,...,2,) € D", for every n € N, is a
mazximal sequence (respestively, minimal sequence ) if #(y(n)) < #{(x(n)) (respestively,
#(y(n)) = #(z(n))) for every y(n) = (y1,¥2, ... ,yn) € D"

€ D" is

= a(s),

3.2. Corollary. If x = (z1,22,...) € D> satisfying z(n) = (z1,%2,... ,%y)
a maximal sequence (respestively, minimal sequence ) for every n € N, then @
(respestively, a = a(s)), where s = >.>° 37 "z,,.

n=1
Note that z(n) = (z1,2z2,... ,2,) = (0,0,...,0);2(n) = (1,1,...,1) or z(n) =
(9,9,...,9), we have #(z(n)) = 1 for every n € N. So they are minimal sequences in D".

Hence by Proposition 2.8 and Corollary 3.2, we have @ = a(s) = 1, where s = > .2 37 "z;.
Thus, we only need consider the maximal sequences.
We denote

(x(k)) ={(y1,-.. ,yx) €D* : (y1,...,ux) = (x1,...,71)}

where z(k) = (z1,... ,2%). We called z(n) = (z1,22,... ,2,) € D™ a mutiple sequence if
#(x(n)) > 1. Otherwise, x(n) is called a prime sequence.

3.3. Claim. Let z(k) = (21,... ,mx) € D*. Then z(k) is a mutiple sequence if and only
if it contains (1, a,0) or (0,a,9), for any a € D.
Proof. It is easy to see the proof of this claim.

By Claim 3.3, we call each element in the set {(1,a,0),(0,a,9)}, for any a € D, a
generator.
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3.4. Claim. Let z(n) = (21,...,2k,0,0,1,1,2%45,... ,2,) € D™, then

#(x(n)) = #{(x1,. .. , 2k, 0,0)) #((1, 1, Ty5,... ,Tpn)).

Proof. Clearly that #(x(n)) > #((z1,... ,2,0,0)) #((1,1,Zky5,... ,Tpn)). Assume that
#Ha(n)) > #(@1,.. . 24,0,0)) #{(L, 1, Zges, . .. ,2n). Then there s 2'(n) = (zF,... ,2}) €
D™ such that:

L (2}, Thyn) = (21, 28,0,0); (T4 5, -+ %) = (L, 1, Tpys,- 0 5 Tn).
2. (Th41>--- »Tyyy) is a mutiple sequence.
By Claim 3.3, then (z},_ ..., 7} ) must contain a sequence (1,a,0) or (0,a,9),

for a € D. Without loss of the generality, we assume that it contains (0,a,9). Then we
consider the following cases.

Case 1. (2}, T} 9, Ty 3) = (0,a,9), then (1,1, 2x15,... ,2n) = (9, 2y, .-, 77,)-
It implies
. —1 x, .—x . —x,
§ = |kt b O Ty
3 3 3n
<Ottt | <92 =2
ST o3 3 T2 2

a contradiction.

/ / / ~ / /
Case 2. (z},,9, T} 3, %) 4) = (0,a,9), then (1,1, 25 15,... , %) = (0,9, Z) 5, Ty,),

for a =1 or a = 9. From case 1 we have a contradiction. For a = 0, we have
1-9 $k+5_$;€+5 Tn —

1-0 R R )
t 5t ot T

It implies

<9|1+ +1|<91—3
I P 6 2’

a contradiction.
Therefore

#(x(n)) = #((x1,. . , 2k, 0,0)F#((1, 1, Zr45,... ,2n)).

The claim is proved.
3.5. Claim. Let z(n) =(1,...,1,0,0) € D™. Put H,, = #(z(n)). Then
Hy=2,H, =H, 1+ [g},for n>3.

Therefore

" { "2;1 if n is odd;

o if n is even,
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where [z] denotes the largest integer < z.
Proof. We will prove by induction. Clearly that the claim is true for n=3. Assume that
it holds for all n < k. We consider the case n = k + 1.
We put s, = Y i, 37“x;. We have sp41 = s}, + 3% = s + 3% and
1 9 1 0

5k232_2+F+3—k:5k—2+F+3—ka

where s;_o = ((1,...,1)). Therefore

Hy1 = Hy + #(sk)

and

#(sk) = #(8)_2) + #(sk—2) = #(s},_2) + 1.

By inductive hypothesis, we have #(s},_,) = [£51]. On the other hand, it is easy to see

that
k—1 k+1

Thus, Hy1 = Hy + [EEL).

Then by considering the cases n is odd or n if even, we have the last resul in the
claim.

The claim is proved.

3.6. Claim. Let z(n) = (z1,... ,2,0,1,...,1,0,0) € D", then

#<w(n)> = #((561,. .. 7wk70)> #((17 cee 717070))
n—k—1
o n—k—1

o) < (“

1
]+ 5#«1» -, 1,0,0))) #(sk+2),
—— —
n—k—2
where sg42 is some point in supp pgy2.

Proof. Put s, = ;3 '@;, m=n—k— 1. We will show that

#(sn) = Hm#(Sk+1)

and

#lsn) < (] + 5 Hm 1) #(shra).

We have
m

#(sn) = Hp—1#(Sk+2) + [5]#(32+2>7

where si 1o — 5,5 = 3,6%, Skt2) g0 € SUPP pkt2. By Claim 2.1 (i) spi2 = sp1 + 3,6%,
for sj41 is some point in supp pr41. It implies #(sk12) = #(Sk+1)-
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If s} o = Sky1+ %% is the unique representation of sj,_ ,, then #(s},_ o) = #(sk41)-
Hence

#{sn) = Huo1#t(sns2) + [51#(shs0)
= (Hyos + [ ) #(s1)

= m#<3k+1>- (5)

If s o9 = Spq1 + 3,6% = Spp1 T 3,6%. Then sp41 — s = 3 3 . By Corollary 2.4 (i)

k
#(Shq1) = #(sky1). It implies # (s o) = 24 (sx11) = 2#(sx12). Therefore

The claim is proved.

3.7. Proposition. Let

% =(1,1,1,1,0,0,1,1,1,1,0,0...)

«'=(1,1,1,1,1,0,0,1,1,1,1,0,0,...)

«®=(1,1,1,1,1,1,0,0,1,1,1,1,0,0,...)

«® =(1,1,0,1,1,1,1,0,0,1,1,1,1,0,0,...)

«*=(1,1,0,0,1,1,1,1,0,0,1,1,1,1,0,0,...)

«® =(1,1,1,0,0,1,1,1,1,0,0,1,1,1,1,0,0,...) (7)

are six sequenses in D*®. Put Fg,1; = #(xf,,,;) for i = 0,1,2,3,4,5, n € N. Then we
have

(i) Fon = 9.9 15 Fopyq = 129771 Fgi0 = 169771

Fonys = 249771 Fypig = 369771 Fypyo = 549771

(il) #(tenti) < Fonii, for i = 0,1,2,3,4,5 and for any n € N, where tg,; is an
arbitrary point in supp pfen+i.

Proof. (i) It is easy to check that #((1,1,0,1,1,1,1,0,0)) = 24. Hence from Claim 3.5
and Claim 3.4, we get the claim (i).

(ii) We will prove the claim by induction. It is straightforward to check that the
assertion holds for n = 1. Suppose that it is true for all n < k(k > 1). We show that the
proposition is true for n = k+1. Let ¢(6(k+1)+1) be an arbitrary point in supp fig(x-41)+i-

At first we prove for the case i = 0.

Write ¢(6k + 6) = (¢t(6k + 2),y3, Y4, Y5, ys). We consider the following cases
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Case 1. If (y4,95,96) is not a generator, then #(tgnr6) = #{ton+s) < Fonts <

Féni6.

Case 2. If (y4,ys5,y6) is a generator.
Without loss of generality, we may assume that (y4,¥s,ys) = (1,a,0).
2.1. If a =1 then

(t(6k +6)) = ((t(6k +2),y3,1,1,0)) U ((¢t(6k + 2),y3,0,1,9)).
Hence

#(t(6k + 6)) = #(t(6k + 3)) + #(t(6k + 4))
< Fort3 + Forra
< Fopt6-

2.2. If a # 1. Without loss of generality, we assume that a = 0.

(8)

If y3 # 1. Then (ys3,y4,0) is not a generator. So the result is similar to the case

a=1.
If y3 =1 then

(t(6k + 6)) = ((£(6k +2),1,1,0,0)) U {(¢(6k +2),1,0,0,9))
U {((£(6k + 2),0,1,9,0)) U ((¢(6k + 2),0,0,9,9)).tag9

Then by replating when y» # 1 or yo = 1 and go on, we have two cases 2.2.1.

(t(6k +2)) = (1,...,1). Then by claim 3.5, we have #(t(6k + 6)) < Foit6-

If

2.2.2. Let (t(6k +2)) = (x1,...,2,0,1,1,...1,0,0). Then by Claim 3.6 and by

puttingm=n—101—1, m > 4. We have
#(t(6k +6)) = #{(l + 1)) Hm

{068+ 6)) < () + 5 Hom ) #{s112)

Clearly for m = 4,5,6 we have

#(t(+1))H,y, < Ferto

and )
m
([5] + §Hm—1)#<sl+2> < Foitye-

Form > 6. Write m=6t+j, t >1,7=0,1,2,3,4,5.

For j =0,m =6t,l+1=[(6k+6) — (6t) —1]+1=6(k—t+1). By Claim 3.5, we

have

Hy, = Hep = 9t°, Fo(or41) = 9:9°7°,
Hppo1 = Her1 = 9t = 3t, Fog—gy1y41 = 12.9°77
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Hence
#(t(+ 1) Him < For—tr1)Hm < 9.971.98% < Fyrp1),

and

23t
ot )(12.9%7)

m 1
([5] + §Hm—1)#<81+2> < (3t +
= 6(9t + 3t)9" " < Fy(p41)-tagll

Thus, #(t(G(kJ + 1))> < F6(k+1)-
Similarly for j = 1,2,3,4,5, we get #(t(6(k 4 1))) < Fg(kt1)-
By repeating this caculus for i = 1,3,4,5 we have #(t(6(k + 1) + 1)) < Fo(ry1)+i-
Now we consider case i = 2. We will show that #(t(6(k + 1) +2)) < Fg(x41)+2- By
similar argument as above, we have

#((6(k + 1) +2)) = #((L(6k + 4),y1,Y2,Y3, Y1) < Fo(r+1)+2

if (yla Y2, Y3, y4) 7& (17 17 07 0)
So we will show that #((t(6k +4),1,1,0,0)) < Fg(xt1)+2- 1. If yerya # 1, without
loss of generality we may assume that ygr+4 = 0. Then by using notes as above, we have

1 0 0
tokt+s = tok+5 + 36k+6 + 36k+7 + 36k+8
0 0 9
= tok+5 + 35575 T 3eR17 T 3oR8
) 1 9 0
= tepts + 36k+6 + 36k+7 + 36k+8
0 9 9

(11)

gt
= tek+s T 36k+6 + 36k+7 + 36k+8 "

/ 1 1. .
Then tegi5 — g5 = 36575 SO l6k+5 = Lok+a = monFs 1S the representation of tgg5.

If 1y 5 = terya + 3619% is the representation of tg, , -, then

#(t(6k + 8)) = 494 (t(6k +4)) < 4Fe14 = Fopys.

If tp 05 = topys T+ 36,@% is the other representation of ¢y, 5. Then tex14 — tg; 4 = Sﬁk%
By Lemma 2.3 we have two cases.

Case 1. If both of tgi4, ty 4 have the unique representation through point t6x4

in supp pex+3. Then

H(L(6k + 8)) < 64 (L(6k + 3)) < 6F5rr3 = Forrs.

Case 2. If both of texy4,tg, 44 have two representations through points in supp

H6k+3,
9

0
tok+a = top43 + 36hT1 tgk+3 + S6h T’

Hera = thoss + moos = g+ oo
6k+4 — Y6k+3 36k+4 — “6k+3 36k+4'

(12)
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! 7 _ 3
Then tg;, 3 — 6113 = 36075 By Lemma 2.3 we have two cases.

a) If tg, . 5 and tg; , 5 have the unique representation through points tex 12 and tg;, o
in supp pek+2, respectively. It implies tgg12 — t%k+2 = 36,@% Hence tgi+2 = tep+1 + 3619%
If ¢, o = lek+1 + 36,6% is the unique representation, then

#(t(6k +8)) = 124(t(6k + 1)) < 12Fgk+1 < Fons.
If t§;,, , has two representations, then #(t'(6k + 2)) > 2#(t(6k + 2). Thus,

#(t(6k + 8)) = 6#(t(6k + 2)) + 64 (t' (6k + 2))
< (34 6)#(t' (6k + 2) < 9Fsp12 = Feris-taglld

b) If both of tg, , 5 and tg; | 5 have two representations through points in supp pr 2,
then it implies tgpy2 — t, 0 = thpio — topso = gorrz. Hence #(tg ) = 2# (topta).
Then we have

Forts > #(torrs) = #(tonra) + #(tok+4)
> 24 (tok+a) + #(tok+a) = 3F# (tok+a)- (14)

It implies #(tex+4) < %F6k+5. Therefore

#(t(6k + 8)) = 2#(t'(6k + 5)) + 2#(t(6k + 5))
= 24 (t'(6k + 5)) + 2#(t(6k + 4))

< (24 5)Fok+s = Forts- (15)

1
3
2. If ygr14 = 1, by similar argument as the proof of the cases i # 2, we have

#(t(6k + 8)) < Fojrs.

The proposition is proved.

4. Proof of the main theorem

4.1. Claim. For s € supp u is defined by s = S(z°), where z° is in Proposition
3.6, We have a(s) = 2.

Proof. For any n > 6, there is k € N such that 6k < n < 6(k+1). By Proposition 3.7, we
have

9k < #<Sn> < 9k+1.

It implies
[log 9% 3 6UHD| _ [log un(sn)|  [log9*F! 37|
6k log 3 ~ nlogd3 7 6(k+1)log3 °
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Passing to the limit we get

o ogpn(sa)l 2
ofs) = Im — g3 3

The claim is proved.

4.2. Claim. a =1, a= %
Proof. For any prime sequence z = (x1,Z3, ... ), for examples z = (21, x2,...) = (0,0,...),
we have #(s,,) = 1 for every n, where s,, = > 1" | 3~ ‘x;. Therefore, by Proposition 2.8 we
get

1
a=a(s) = lim —| 08 in(Sn)| =1,
n—oo  nlog3
where s = S(x).
From Claim 4.1 we have

Q<

[SSR )

For any n € N,n=6k+1,k € N,i=0,1,2,3,4,5, we have
#(tn) = #(terrs) < 54Fsr = 6.9%.
Hence, i, (tn) = perri(torss) < 37 (0F+06.9% = 2.3-4k+(1-9) We have

1 (tokvi log 2.3~ 4+(1-9| 2
lim | og /~‘L6k+.l (tﬁk-i-z) ‘ 2 im ’ og 3 : | — (16)
n—oo  (6k +1)log3 n—oo  (6k +1i)log3 3

for all : =0, 1,2,34,5, where t,, be n - partial sum of t. So we get

i}
WV
ol

Therefore

I
I

[SSRI)

The claim is proved.
To complete the proof of our Main Theorem it remains to prove the following claim.

4.3. Claim. For any (3 € (
Proof. Since 8 € (%,1), there is
1=1,2,..., define

1) there exists s € supp p for which a(s) = .

2
3
r € (0,1) such that 8 = 2r + (1 —r)l = 1—%. For

if 7 is even.

1 if 71is odd;
ki = [61‘(14)]

Let n; = 23:1 k; and let

Ej={i:i<jandiiseven}; O; ={i:i<jandiisodd},
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ej:Zki;O]‘:Zki.

iEEj iEO]‘
Then
TLj = Oj + €j.

Similar proof as the proof of Claim 3.2 in [11], we get

. My .0
lim —=0; lim -—=1and lim £ =7.
Jj—oo N j—oo My Jj—00 n;

We define s € supp p by s = S(x), where

z=(1,1,1,1,0,00,0,...,01,1,1,1,0,0,1,1,1,1,0,0,1,1,1,1,0,00,0, . ..

k1=6 ko k3=18 ka
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(17)

Note that, for i € O;, we have #(sy,) = Fg; = 9°. For s € supp u is defined by z in (16)

and for n;_; < n < nj, by the multiplication principle, we have

TT #(sk) < #sn) < ] #(sx.)-

iEOjfl iGOj

Hence, by Claim 3.4 yield
Oj_1 o

975 < #(s,) <97,

which implies
0, 1 0,
log9— 6 < log #(sp,) < log 97
njlogd ~ nlogd  nj_ilog3d’

Hence
p Jog#(sn) 7
noo nlog3 3
Therefore
. |log #(sn)37"| . log #(sn) r
=1 —_— = 1-1 — =1 =
a(s) 500 nlog3 300 nlog3 3

The claim is proved.
From Claim 4.2 and 4.3 the Main Theorem follows
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