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Abstract. Let X be random variable taking values 0, 1, a with equal probability 1/3

and let X1, X2, ... be a sequence of independent identically distributed (i.i.d) random

variables with the same distribution as X. Let µ be the probability measure induced by

S =
∞
i=1 3

−iXi. Let α(s) (resp. α(s),α(s)) denote the local dimension (resp. lower,
upper local dimension) of s ∈ supp µ.
Put

α = sup{α(s) : s ∈ supp µ};α = inf{α(s) : s ∈ supp µ};
E = {α : α(s) = α for some s ∈ supp µ}.

When a ≡ 0 (mod 3), the probability measure µ is singular and it is conjectured that for
a = 3k (for any k ∈ N), the local dimension is still the same as the case k = 1, 2. It means
E = [1− log(a)

b log 3 , 1], for a, b depend on k. Our result shows that for k = 3 (a = 9),α = 1,

α = 2/3 and E = [23 , 1].

1. Introduction

By a Probabilistic system we mean a sequence X1, X2, ... of i.i.d random variables

with the same distribution as X, where X is a random variable taking values a1, a2, ..., am
with probability p1, p2, ..., pm, respectively.

Let S =
∞
i=1 ρ

iXi, for 0 < ρ < 1, then the probability measure µ induced by S,

i.e.,

µ(A) = Prob{ω : S(ω) ∈ A}

is called the Fractal measure associated with the probabilistic system.

It is specified two interesting cases.

The first case is when m = 2, p1 = p2 = 1/2 and a1 = 0, a2 = 1. In this case the

fractal measure µ is known as ”Infinite Bernoulli Convolutions”. This measure has been

studied for over sixty years but is still only partial understood today.
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The second case of interest is when m = 3, ρ = p1 = p2 = p3 = 1/3 and a1 = 0, a2 =

1, a3 = a. Some authors have found α,α and E for some concrete values of a for which

µ is singular. But for each of them, the way to find α,α and E is quite different. It is

conjectured that the way to find them in the general case is dificult.

Let us recall that for s ∈ supp µ the local dimension α(s) of µ at s is defined by

α(s) = lim
h→0+

logµ(Bh(s))

log h
, (1)

provided that the limit exists, where Bh(s) denotes the ball centered at s with radius h. If

the limit (1) does not exist, we define the upper and lower local dimension, denoted α(s)

and α(s), by taking the upper and lower limits, respectively.

Denote

α = sup{α(s) : s ∈ supp µ} ; α = inf{α(s) : s ∈ supp µ},

and let

E = {α : α(s) = α for some s ∈ supp µ}
be the attainable values of α(s), i.e., the range of function α definning in the supp µ.

In this paper, we consider the interest second case with a = 9 (a ≡ 0 (mod 3)).

Our result is the following.

Main Theorem. For a = 9, α = 1,α = 2
3 and E = [

2
3 , 1].

The paper is organized as follows. In Section 2, we establish some auxiliary results

are used to prove the formula for calculating the local dimension. In Section 3, we prove

the maximal sequences, it is used to find the lower local dimension. The proof of the Main

Theorem will be given in the last section.

2. The formula for calculating the local dimension

Let X1,X2, . . . be a sequence of i.i.d random variables each taking values 0, 1, 9

with equal probability 1/3. Let S =
∞
i=1 3

−iXi, Sn =
n
i=1 3

−iXi be the n-partial sum
of S, and let µ, µn be the probability measures induced by S, Sn, respectively. For any

s =
∞
i=1 3

−ixi ∈ supp µ, xi ∈ D: = {0, 1, 9}, let sn = n
i=1 3

−ixi be its n-partial sum.
Let

�snX = {(x1, x2, ..., xn) ∈ Dn :
n

i=1

3−ixi = sn}.

Then we have

µn(sn) = #�snX3−n for every n, (2)

where #X denotes the cardinality of set X.

Two sequences (x1, x2, ..., xn) and (x
I
1, x
I
2, ..., x

I
n) in D

n are said to be equivalent,

denoted by (x1, x2, . . . , xn) ≈ (xI1, xI2, . . . , xIn) if
n
i=1 3

−ixi =
n
i=1 3

−ixIi. We have
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2.1. Claim. (i) For any (x1, x2, . . . , xn), (x
I
1, x
I
2, . . . , x

I
n) in D

n and sn =
n
i=1 3

−ixi,
sIn =

n
i=1 3

−ixIi, we have |sn − sIn| = k3−n for some k ∈ N and xn − xIn ≡ k (mod 3).
(ii) Let sn < s

I
n < s

II
n be three arbitrary consecutive points in supp µn. Then either s

I
n−sn

or sIIn − sIn is not i
3n for i = 1, 2, 3 and for every n ∈ N .

(iii) Let sn, s
I
n ∈ supp µn and sn − sIn = 1

3n or
4
3n . Then sn = sn−1 +

1
3n is the unique

representation of sn through points in supp µn−1 and sIn = sn−1 +
0
3n or s

I
n = s

I
n−1 +

9
3n

or both of them, where sn−1, sIn−1 in supp µn−1.
(iv) For any sn, s

I
n ∈ supp µn such that sn− sIn = 2

3n . Then s
I
n = s

I
n−1+

1
3n is the unique

representation of sIn through points in supp µn−1 and sn = sn−1 +
0
3n or sn = s

II
n−1 +

9
3n

or both of them, where sn−1, sIn−1, s
II
n−1 in supp µn−1.

Proof. It is proved similarly as proof of Claim 2.1, 2.2 in [11].

2.2. Corollary. (i) Let sn+1 ∈ supp µn+1 and sn+1 = sn + 1
3n+1 , sn ∈ supp µn. We have

#�sn+1X = #�snX, for every n 1.

(ii) For any sn, s
I
n ∈ supp µn, if sn − sIn = 1

3n or sn − sIn = 2
3n , then sn, s

I
n are two

consecutive points in supp µn.

(iii) Let sn, s
I
n ∈ supp µn, if sn − sIn = 1

3n then #�snX #�sInX.
Proof. It follows directly from Claim 2.1.

2.3. Lemma. For any sn, s
I
n ∈ supp µn, if sn − sIn = 3

3n , then either both of sn, s
I
n have

two representations through points in supp µn−1 or sn = sn−1 + xn
3n , s

I
n = s

I
n−1 +

xn
3n , for

xn ∈ D, sn−1, sIn−1 in supp µn−1.
Proof. Assume on the contrary, then there are the following cases.

Case 1. If sn = sn−1 + 0
3n = s

II
n−1 +

9
3n , s

I
n = s

I
n−1 +

0
3n (1).

Then sIn−1−sIIn−1 = 2
3n−1 . By Claim 2.1 (iv) s

II
n−1 = s

II
n−2+

1
3n−1 . It implies s

I
n = s

∗
n−1+

9
3n ,

where s∗n−1 = sIIn−2 +
0

3n−1 , a contradiction to (1).

Case 2. If sn = sn−1 + 0
3n = s

II
n−1 +

9
3n , s

I
n = s

I
n−1 +

9
3n (2).

Then sn−1−sIn−1 = 4
3n−1 . By Claim 2.1 (iii) sn−1 = sn−2+

1
3n−1 . It implies s

I
n = s

∗
n−1+

0
3n ,

where s∗n−1 = sn−2 +
0

3n−1 , a contradiction to (2).

Case 3. If sn = sn−1 + 9
3n , s

I
n = s

I
n−1 +

0
3n = s

II
n−1 +

9
3n (3).

Then sn−1−sIIn−1 = 1
3n−1 . By Claim 2.1 (iii) sn−1 = sn−2+

1
3n−1 . If s

I
n−1 = sIn−2+

0
3n , then

sn = s
∗
n−1+

0
3n , where s

∗
n−1 = s

I
n−2+

1
3n−1 , a contradiction to (3). Hence s

I
n−1 = s

II
n−2+

9
3n .

It implies sn−2 − sIIn−2 = 2
3n−2 .

If sn−2 = sn−3+ 0
3n−2 , then there is s

I
n−2 = sn−3+

1
3n−1 . Hence sn−2 = s

I
n−3+

9
3n−2 .

Thus, by repeating this argument then there are two points s1, s
I
1 ∈ supp µ1, such that

s1 − sI1 = 2
3 , a contradiction.

Case 4. If sn = sn−1 + 0
3n , s

I
n = s

I
n−1 +

0
3n = s

II
n−1 +

9
3n (4).
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Then sn−1−sIIn−1 = 4
3n−1 . By Claim 2.1 (iii) sn−1 = sn−2+

1
3n−1 . If s

II
n−1 = s

I
n−2+

0
3n , then

sn = s
∗
n−1+

9
3n , where s

∗
n−1 = s

I
n−2+

1
3n−1 , a contradiction to (4). Hence s

II
n−1 = s

II
n−2+

9
3n

is the unique representation of sIIn−1 (5). Then we have sn−2 − sIIn−2 = 4
3n−2 , by Claim 2.1

(iii) sn−2 = sn−3 + 1
3n−2 . Then there is s

I
n−2 = sn−3 +

0
3n−1 . It implies s

II
n−1 = s

I
n−2 +

0
3n

a contradiction to (5). So this case does not happen.

Observe that, from Case 3 and Case 4 there are not the cases

sn = sn−1 +
9

3n
, sIn = s

I
n−1 +

0

3n

and

sn = sn−1 +
0

3n
, sIn = s

I
n−1 +

9

3n
.

The lemma is proved.

2.4. Corollary. (i) Let sn, s
I
n ∈ supp µn, if sn − sIn = 3

3n , then #�snX #�sInX.
(ii) For any sn < s

I
n < s

II
n are three consecutive points in supp µn and s

II
n − sIn = 3

3n, then

sIn − sn W= 2
3n .

Proof. (i) It follows directly from Lemma 2.3 and Corollary 2.2(iii).

(ii) It follows directly from Lemma 2.3 and Claim 2.1 (ii).

2.5. Lemma. Let sn, s
I
n ∈ supp µn, if sn − sIn = 1

3n, then

µn(s
I
n)

µn(sn)

n+ 1

2
.

Proof. We will prove the inequality by induction. Clearly the inequality holds for n = 1.

Suppose that it is true for all n k − 1. We consider the case n = k.
By Claim 2.1 (iii) and Corollary 2.2 (i), we have #�skX = #�sk−1X, where

sk = sk−1 +
1

3k
, sk−1 ∈ supp µk−1.

We consider the following cases.

Case 1. If sIk = sk−1+
0
3k
is the unique representation of sIk through point in supp

µk−1. Then #�sIkX = #�sk−1X. Therefore

#�sIkX
#�skX =

#�sk−1X
#�sk−1X = 1

k + 1

2
.

Case 2. If sIk has two representations through points in supp µk−1,

sIk = sk−1 +
0

3k
= sIk−1 +

9

3k
.
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Then sk−1 − sIk−1 = 3
3k−1 . By Lemma 2.3, either

sk−1 = sk−2 +
xk
3k−1

and sIk−1 = s
I
k−2 +

xk
3k−1

, (1)

or

sk−1 = sk−2 +
0

3k−1
= sIIk−2 +

9

3k−1

and

sIk−1 = s
I
k−2 +

0

3k−1
= sIIIk−2 +

9

3k−1
. (2)

If (1) happens, then

#�sk−1X = #�sk−2X,#�sIk−1X = #�sIk−2X and sk−2 − sIk−2 =
1

3k−2
.

By inductive hypothesis, we have

#�sIkX
#�skX =

#�sk−1X+#�sIk−1X
#�sk−1X =

#�sk−2X+#�sIk−2X
#�sk−2X 1 +

k − 1
2

=
k + 1

2
.

If (2) happens, then

#�sk−1X = #�sk−2X+#�sIIk−2X,

#�sIk−1X = #�sIk−2X+#�sIIIk−2X.
By inductive hypothesis, we have

#�sIkX
#�skX =

#�sk−1X+#�sIk−1X
#�sk−1X = 1 +

#�sIk−2X+#�sIIIk−2X
#�sk−2X+#�sIIk−2X

1 +
k−1
2 [#�sk−2X+#�sIIk−2X]
#�sk−2X+#�sIIk−2X

1 +
k − 1
2

=
k + 1

2
. (3)

The lemma is proved.

2.6. Lemma. Let sn, s
I
n ∈ supp µn, and sn − sIn = 3

3n . We always have

µn(s
I
n)

µn(sn)
n.

Proof. Since sn − sIn = 3
3n , by Lemma 2.3, we have two following cases.

Case 1. Both of sn, s
I
n have the unique representations through points sn−1, sIn−1

in supp µn−1, respectively. Then

#�snX = #�sn−1X,#�sInX = #�sIn−1X and sn−1 − sIn−1 =
1

3n−1
.
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By Lemma 2.5, we have

#�sInX
#�snX =

#�sIn−1X
#�sn−1X

(n− 1) + 1
2

< n.

Case 2. Both of sn, s
I
n has two representations through points in supp µn−1,

sn = sn−1 +
0

3n
= sIIn−1 +

9

3n
, sIn = s

I
n−1 +

0

3n
= sIIIn−1 +

9

3n
.

Then sn−1 − sIn−1 = sIIn−1 − sIIIn−1 = 1
3n−1 . By Lemma 2.5, we have

#�sIn−1X
(n− 1) + 1

2
#�sn−1X,#�sIIIn−1X

(n− 1) + 1
2

#�sIIn−1X.

Hence, we have

#�sInX
#�snX =

#�sIIIn−1X+#�sIn−1X
#�sn−1X+#�sIIn−1X
(n−1)+1

2 [#�sn−1X+#�sIIn−1X]
#�sn−1X+#�sIIn−1X

n

2
< n. (4)

The lemma is proved.

Using Lemma 2.5, 2.6 we will prove the following lemma, which is used to establish

a useful formula for calculating the local dimension.

2.7. Lemma. For any two consecutive points sn and s
I
n in supp µn, we have

µn(sn)

µn(sIn)
n.

Proof. By (2) it is sufficient to show that #�snX
#�sInX n. We will prove the inequality by

induction. Clearly the inequality holds for n = 1. Suppose that it is true for all n k.

Let sk+1 > s
I
k+1 be two arbitrary consecutive points in supp µk+1. Write

sk+1 = sk +
xk+1
3k+1

, sk ∈ supp µk, xk+1 ∈ D.

We consider the following cases for xk+1

Case 1. If xk+1 = 1, then sk+1 = sk+
1

3k+1
. By Corollary 2.2 (i) #�sk+1X = #�skX.

We have sIk+1 = sk +
0

3k+1
. Assume that sIk+1 has an other representation

sIk+1 = s
I
k +

9

3k+1
, sIk ∈ supp µk.
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Then #�sIk+1X #�skX+#�sIkX and sk−sIk = 3
3k
. By Lemma 2.5, we have #�sIkX k#�skX.

Thus,
#�sIk+1X
#�sk+1X

#�skX+#�sIkX
#�skX

(1 + k)#�skX
#�skX = 1 + k.

Case 2. If xk+1 = 0, then sk+1 = sk +
0

3k+1
.

a) If sk+1 has not any other representation. Then #�sk+1X = #�skX.
For any s∗k+1 = s

∗
k +

x∗k+1
3k+1

< sk+1 = sk. It implies s
∗
k < sk.

Let sIk ∈ supp µk be the biggest value smaller than sk then s
I
k < sk are two

consecutive points in supp µk and sk − sIk W= 3
3k
. Then there are three following cases.

If sk = sIk +
1
3k
then sIk+1 = sIk +

1
3k+1

. By Corollary 2.2 (i) #�sIk+1X = #�sIkX.
Therefore

#�sk+1X
#�sIk+1X

=
#�skX
#�sIkX

k < k + 1.

The case sk = s
I
k +

2
3k
is proved similarly to the case sk = s

I
k +

1
3k
.

If sk − sIk > 3
3k
, then sIk+1 = s

I
k +

9
3k+1

is the unique representation of sIk+1. Hence,
#�sIk+1X = #�sIkX.

Therefore
#�sIk+1X
#�sk+1X =

#�sIkX
#�skX k < k + 1.

b) If sk+1 has an other representation sk+1 = s
I
k +

9
3k+1

.

b1) If sIk, sk are two consecutive points in supp µk, then let s
II
k < s

I
k in supp µk are

two consecutive points. By Corollary 2.4 (ii) we have two cases

sIk − sIIk >
3

3k
or sIk − sIIk =

1

3k
.

If sIk − sIIk > 3
3k
, then sIk+1 = sIk +

1
3k+1

. By Corollary 2.2 (i) #�sIk+1X = #�sIkX.
Therefore

#�sk+1X
#�sIk+1X

=
#�sIkX+#�skX

#�sIkX
1 + k.

If sIk − sIIk = 1
3k
, then #�sIkX #�sIIkX and sIk+1 = sIIk + 9

3k+1
is the unique represen-

tation of sIk+1. Hence, #�sIk+1X = #�sIIkX. Therefore

#�sk+1X
#�sIk+1X

=
#�sIkX+#�skX

#�sIIkX
1 +

#�skX
#�sIIkX

1 +
#�skX
#�sIkX

1 + k.

b2) Assume that there is s∗k in supp µk and s
∗
k ∈ (sIk, sk). Then there are two cases.

If sk − s∗k = 1
3k
, then sIk+1 = s∗k +

1
3k+1

, so #�sIk+1X = #�s∗kX and #�skX #�s∗kX. By
Corollary 2.2 (ii), sIk, s

∗
k, sk are three consecutive points in supp µk. Therefore

#�sk+1X
#�sIk+1X

=
#�sIkX+#�skX

#�s∗kX
#�sIkX
#�skX +

#�skX
#�skX k + 1.
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If s∗k − sIk = 1
3k
, then sIk+1 = s∗k +

1
3k+1

. So #�sIk+1X = #�s∗kX. Since s∗k − sIk = 1
3k
, by

Claim 2.1 (iii) s∗k = s
∗
k−1 +

1
3k
. Since sk − sIk = 3

3k
, by Lemma 2.3 we have following two

cases. If both of sIk, sk have two representations through points in supp µk−1,

sk = sk−1 +
0

3k
= sIk−1 +

9

3k
,

sIk = s
∗
k−1 +

0

3k
= sIIk−1 +

9

3k
.

Then sk−1 − s∗k−1 = sIk−1 − sIIk−1 = 1
3k−1 .

Hence, by Corollary 2.2 (iii),

#�sIkX = #�sIIk−1X+#�s∗k−1X #�sk−1X+#�sIk−1X = #�skX.
Therefore, by Lemma 2.5

#�sk+1X
#�sIk+1X

=
#�sIkX+#�skX

#�s∗kX
2#�sIkX
#�s∗kX

2
k + 1

2
= k + 1.

If both of sIk, sk have the unique representations through points in supp µk−1.
Since s∗k − sk = 1

3k
, s∗k = s∗k−1 +

1
3k
, we have sk = s∗k−1 +

0
3k
. By Lemma 2.3,

sk = sk−1 + 0
3k
. It implies sk−1 − s∗k−1 = 1

3k−1 . Hence,

#�skX = #�sk−1X,#�sIkX = #�s∗k−1X = #�s∗kX
and s∗k−1, sk−1 are two consecutive points. Therefore

#�sk+1X
#�sIk+1X

=
#�sIkX+#�skX

#�s∗kX
=
#�s∗k−1X+#�sk−1X

#�s∗k−1X
1 + (k − 1) < k + 1.

Case 3. If xk+1 = 9. We assume that sk+1 = sk+
9

3k+1
is the unique representation

of sk+1 through points in supp µk. Then #�sk+1X = #�skX.
Let sIk ∈ supp µk be the smallest value bigger than sk then sk < sIk are two

consecutive points in supp µk. Since sk+1 = sk +
9

3k+1
is the unique representation of

sk+1, so we have following two cases.

a) If sIk = sk +
1
3k
or sIk = sk +

2
3k
. Then sIk+1 = s

I
k +

1
3k+1

. So #�sIk+1X = #�sIkX.
Therefore

#�sk+1X
#�sIk+1X

=
#�skX
#�sIkX

k < k + 1.

b) sIk > sk +
3
3k
. Then we have sIk+1 = sIIk +

9
3k+1

is the unique representation of

sk+1 through point in supp µk, where s
II
k < sk are two consecutive points in supp µk.

Then
#�sk+1X
#�sIk+1X

=
#�skX
#�sIIkX

k < k + 1.

The lemma is proved.

The following proposition provides a useful formula for calculating the local dimen-

sion and it is proved similarly as the proof of Proposition 2.3 in [11] and using Lemma

2.7.
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2.8. Proposition. For s ∈ supp µ, we have

α(s) = lim
n→∞

| logµn(sn)|
n log 3

,

provided that the limit exists. Otherwise, by taking the upper and lower limits respectively

we get the formulas for α(s) and α(s).

3. The maximal sequence

For each infinite sequence x = (x1, x2, . . . ) ∈ D∞ defines a point s ∈ supp µ by

s = S(x) :=
∞

n=1

3−nxn.

By Proposition 2.8 the lower local dimension (respestively, the upper local dimen-

sion) will be determined by an element x = (x1, x2, . . . ) ∈ D∞ for which #�(x1, x2, . . . )X
has the largest value (respestively, the smallest value). This suggests the following defini-

tion.

3.1. Definition. We say that x(n) = (x1, x2, . . . , xn) ∈ Dn, for every n ∈ N , is a
maximal sequence (respestively, minimal sequence ) if #�y(n)X #�x(n)X (respestively,
#�y(n)X #�x(n)X) for every y(n) = (y1, y2, . . . , yn) ∈ Dn.

3.2. Corollary. If x = (x1, x2, . . . ) ∈ D∞ satisfying x(n) = (x1, x2, . . . , xn) ∈ Dn is

a maximal sequence (respestively, minimal sequence ) for every n ∈ N , then α = α(s),

(respestively, α = α(s)), where s =
∞
n=1 3

−nxn.
Note that x(n) = (x1, x2, . . . , xn) = (0, 0, . . . , 0);x(n) = (1, 1, . . . , 1) or x(n) =

(9, 9, . . . , 9), we have #�x(n)X = 1 for every n ∈ N . So they are minimal sequences in Dn.

Hence by Proposition 2.8 and Corollary 3.2, we have α = α(s) = 1, where s = ∞
i=1 3

−ixi.
Thus, we only need consider the maximal sequences.

We denote

�x(k)X = {(y1, . . . , yk) ∈ Dk : (y1, . . . , yk) ≈ (x1, . . . , xk)}

where x(k) = (x1, . . . , xk). We called x(n) = (x1, x2, . . . , xn) ∈ Dn a mutiple sequence if

#�x(n)X > 1. Otherwise, x(n) is called a prime sequence.

3.3. Claim. Let x(k) = (x1, . . . , xk) ∈ Dk. Then x(k) is a mutiple sequence if and only

if it contains (1, a, 0) or (0, a, 9), for any a ∈ D.
Proof. It is easy to see the proof of this claim.

By Claim 3.3, we call each element in the set {(1, a, 0), (0, a, 9)}, for any a ∈ D, a
generator.
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3.4. Claim. Let x(n) = (x1, . . . , xk, 0, 0, 1, 1, xk+5, . . . , xn) ∈ Dn, then

#�x(n)X = #�(x1, . . . , xk, 0, 0)X #�(1, 1, xk+5, . . . , xn)X.

Proof. Clearly that #�x(n)X #�(x1, . . . , xk, 0, 0)X #�(1, 1, xk+5, . . . , xn)X. Assume that
#�x(n)X > #�(x1, . . . , xk, 0, 0)X#�(1, 1, xk+5, . . . , xn)X. Then there is xI(n) = (xI1, . . . , xIn) ∈
Dn such that:

1. (xI1, . . . , x
I
k+2) ≈ (x1, . . . , xk, 0, 0); (xIk+3, . . . , xIn) ≈ (1, 1, xk+5, . . . , xn).

2. (xIk+1, . . . , x
I
k+4) is a mutiple sequence.

By Claim 3.3, then (xIk+1, . . . , x
I
k+4) must contain a sequence (1, a, 0) or (0, a, 9),

for a ∈ D. Without loss of the generality, we assume that it contains (0, a, 9). Then we
consider the following cases.

Case 1. (xIk+1, x
I
k+2, x

I
k+3) = (0, a, 9), then (1, 1, xk+5, . . . , xn) ≈ (9, xIk+4, . . . , xIn).

It implies

8 = |x
I
k+4 − 1
3

+
xIk+5 − xk+5

32
+ . . .+

xIn − xn
3n

|

9|1
3
+
1

32
+ . . .+

1

3n
| < 9.1

2
=
9

2
,

a contradiction.

Case 2. (xIk+2, x
I
k+3, x

I
k+4) = (0, a, 9), then (1, 1, xk+5, . . . , xn) ≈ (a, 9, xIk+5, . . . , xIn),

for a = 1 or a = 9. From case 1 we have a contradiction. For a = 0, we have

1− 0 + 1− 9
3

+
xk+5 − xIk+5

32
+ . . .+

xn − xIn
3n

= 0.

It implies

5

3
= |xk+5 − x

I
k+5

32
+ . . .+

xn − xIn
3n

|

9| 1
32
+ . . .+

1

3n
| < 9.1

6
=
3

2
,

a contradiction.

Therefore

#�x(n)X = #�(x1, . . . , xk, 0, 0)X#�(1, 1, xk+5, . . . , xn)X.
The claim is proved.

3.5. Claim. Let x(n) = (1, . . . , 1, 0, 0) ∈ Dn. Put Hn = #�x(n)X. Then

H3 = 2,Hn = Hn−1 + [
n

2
], for n 3.

Therefore

Hn =
n2−1
4 if n is odd;

n2

4 if n is even,
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where [x] denotes the largest integer x.

Proof. We will prove by induction. Clearly that the claim is true for n=3. Assume that

it holds for all n k. We consider the case n = k + 1.

We put sn =
n
i=1 3

−ixi. We have sk+1 = sIk +
9
3k
= sk +

0
3k
and

sk = s
I
k−2 +

1

3k−1
+
9

3k
= sk−2 +

1

3k−1
+
0

3k
,

where sk−2 = �(1, . . . , 1)X. Therefore

Hk+1 = Hk +#�skX

and

#�skX = #�sIk−2X+#�sk−2X = #�sIk−2X+ 1.
By inductive hypothesis, we have #�sIk−2X = [k−12 ]. On the other hand, it is easy to see
that

[
k − 1
2

] + 1 = [
k + 1

2
].

Thus, Hk+1 = Hk + [
k+1
2 ].

Then by considering the cases n is odd or n if even, we have the last resul in the

claim.

The claim is proved.

3.6. Claim. Let x(n) = (x1, . . . , xk, 0, 1, . . . , 1, 0, 0) ∈ Dn, then

#�x(n)X = #�(x1, . . . , xk, 0)X #�(1, . . . , 1, 0, 0
n−k−1

)X

or

#�x(n)X ([
n− k − 1

2
] +

1

2
#�(1, . . . , 1, 0, 0

n−k−2

)X) #�sk+2X,

where sk+2 is some point in supp µk+2.

Proof. Put sn =
n
i=1 3

−ixi, m = n− k − 1. We will show that

#�snX = Hm#�sk+1X

and

#�snX ([
m

2
] +

1

2
Hm−1)#�sIk+2X.

We have

#�snX = Hm−1#�sk+2X+ [m
2
]#�sIk+2X,

where sk+2 − sIk+2 = 1
3k+2

, sk+2, s
I
k+2 ∈ supp µk+2. By Claim 2.1 (ii) sk+2 = sk+1 +

1
3k+2

,

for sk+1 is some point in supp µk+1. It implies #�sk+2X = #�sk+1X.
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If sIk+2 = sk+1+
0

3k+2
is the unique representation of sIk+2, then #�sIk+2X = #�sk+1X.

Hence

#�snX = Hm−1#�sk+2X+ [m
2
]#�sIk+2X

= (Hm−1 + [
m

2
])#�sk+1X

= Hm#�sk+1X. (5)

If sIk+2 = sk+1 +
0

3k+2
= sIk+1 +

9
3k+2

. Then sk+1 − sIk+1 = 3
3k+1

. By Corollary 2.4 (i)

#�sIk+1X #�sk+1X. It implies #�sIk+2X 2#�sk+1X = 2#�sk+2X. Therefore

#�snX = Hm−1#�sk+2X+ [m
2
]#�sIk+2X

(
1

2
Hm−1 + [

m

2
])#�sIk+2X. (6)

The claim is proved.

3.7. Proposition. Let

x0 = (1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0 . . . )

x1 = (1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, . . . )

x2 = (1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, . . . )

x3 = (1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, . . . )

x4 = (1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, . . . )

x5 = (1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, . . . ) (7)

are six sequenses in D∞. Put F6n+i = #�xi6n+iX for i = 0, 1, 2, 3, 4, 5, n ∈ N . Then we
have

(i) F6n = 9.9
n−1; F6n+1 = 12.9n−1; F6n+2 = 16.9n−1

F6n+3 = 24.9
n−1; F6n+4 = 36.9n−1; F6n+2 = 54.9n−1

(ii) #�t6n+iX F6n+i, for i = 0, 1, 2, 3, 4, 5 and for any n ∈ N , where t6n+i is an
arbitrary point in supp µ6n+i.

Proof. (i) It is easy to check that #�(1, 1, 0, 1, 1, 1, 1, 0, 0)X = 24. Hence from Claim 3.5

and Claim 3.4, we get the claim (i).

(ii) We will prove the claim by induction. It is straightforward to check that the

assertion holds for n = 1. Suppose that it is true for all n k(k 1). We show that the

proposition is true for n = k+1. Let t(6(k+1)+i) be an arbitrary point in supp µ6(k+1)+i.

At first we prove for the case i = 0.

Write t(6k + 6) = (t(6k + 2), y3, y4, y5, y6). We consider the following cases
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Case 1. If (y4, y5, y6) is not a generator, then #�t6n+6X = #�t6n+5X F6n+5
F6n+6.

Case 2. If (y4, y5, y6) is a generator.

Without loss of generality, we may assume that (y4, y5, y6) = (1, a, 0).

2.1. If a = 1 then

�t(6k + 6)X = �(t(6k + 2), y3, 1, 1, 0)X ∪ �(t(6k + 2), y3, 0, 1, 9)X.

Hence

#�t(6k + 6)X = #�t(6k + 3)X+#�t(6k + 4)X
F6k+3 + F6k+4

F6k+6. (8)

2.2. If a W= 1. Without loss of generality, we assume that a = 0.
If y3 W= 1. Then (y3, y4, 0) is not a generator. So the result is similar to the case

a = 1.

If y3 = 1 then

�t(6k + 6)X = �(t(6k + 2), 1, 1, 0, 0)X ∪ �(t(6k + 2), 1, 0, 0, 9)X
∪ �(t(6k + 2), 0, 1, 9, 0)X ∪ �(t(6k + 2), 0, 0, 9, 9)X.tag9

Then by replating when y2 W= 1 or y2 = 1 and go on, we have two cases 2.2.1. If

(t(6k + 2)) = (1, . . . , 1). Then by claim 3.5, we have #�t(6k + 6)X F6k+6.

2.2.2. Let (t(6k + 2)) = (x1, . . . , xl, 0, 1, 1, . . . 1, 0, 0). Then by Claim 3.6 and by

putting m = n− l − 1, m 4. We have

#�t(6k + 6)X = #�t(l + 1)XHm
or

#�t(6k + 6)X ([
m

2
] +

1

2
Hm−1)#�sl+2X.

Clearly for m = 4, 5, 6 we have

#�t(l + 1)XHm F6k+6

and

([
m

2
] +

1

2
Hm−1)#�sl+2X F6k+6.

For m 6. Write m = 6t+ j, t 1, j = 0, 1, 2, 3, 4, 5.

For j = 0,m = 6t, l+ 1 = [(6k+ 6)− (6t)− 1] + 1 = 6(k− t+ 1). By Claim 3.5, we

have

Hm = H6t = 9t
2, F6(k−t+1) = 9.9k−t,

Hm−1 = H6t−1 = 9t2 − 3t, F6(k−t+1)+1 = 12.9k−t.
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Hence

#�t(l + 1)XHm F6(k−t+1)Hm 9.9k−t.9t2 F6(k+1),

and

([
m

2
] +

1

2
Hm−1)#�sl+2X (3t+

9t2 − 3t
2

)(12.9k−t)

= 6(9t2 + 3t)9k−t F6(k+1).tag10

Thus, #�t(6(k + 1))X F6(k+1).

Similarly for j = 1, 2, 3, 4, 5, we get #�t(6(k + 1))X F6(k+1).

By repeating this caculus for i = 1, 3, 4, 5 we have #�t(6(k + 1) + i)X F6(k+1)+i.

Now we consider case i = 2. We will show that #�t(6(k+1)+ 2)X F6(k+1)+2. By

similar argument as above, we have

#�t(6(k + 1) + 2)X = #�(t(6k + 4), y1, y2, y3, y4)X F6(k+1)+2

if (y1, y2, y3, y4) W= (1, 1, 0, 0).
So we will show that #�(t(6k+ 4), 1, 1, 0, 0)X F6(k+1)+2. 1. If y6k+4 W= 1, without

loss of generality we may assume that y6k+4 = 0. Then by using notes as above, we have

t6k+8 = t6k+5 +
1

36k+6
+

0

36k+7
+

0

36k+8

= t6k+5 +
0

36k+6
+

0

36k+7
+

9

36k+8

= tI6k+5 +
1

36k+6
+

9

36k+7
+

0

36k+8

= tI6k+5 +
0

36k+6
+

9

36k+7
+

9

36k+8
. (11)

Then t6k+5 − tI6k+5 = 1
36k+5

, so t6k+5 = t6k+4 =
1

36k+5
is the representation of t6k+5.

If tI6k+5 = t6k+4 +
0

36k+5
is the representation of tI6k+5, then

#�t(6k + 8)X = 4#�t(6k + 4)X 4F6k+4 = F6k+8.

If tI6k+5 = t
I
6k+4 +

9
36k+5

is the other representation of tI6k+5. Then t6k+4 − tI6k+4 = 3
36k+4

.

By Lemma 2.3 we have two cases.

Case 1. If both of t6k+4, t
I
6k+4 have the unique representation through point t6k+4

in supp µ6k+3. Then

#�t(6k + 8)X 6#�t(6k + 3)X 6F6k+3 = F6k+8.

Case 2. If both of t6k+4, t
I
6k+4 have two representations through points in supp

µ6k+3,

t6k+4 = t6k+3 +
0

36k+4
= tII6k+3 +

9

36k+4
,

tI6k+4 = t
I
6k+3 +

0

36k+4
= tIII6k+3 +

9

36k+4
.

(12)
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Then tI6k+3 − tIII6k+3 = 3
36k+3

. By Lemma 2.3 we have two cases.

a) If tI6k+3 and t
III
6k+3 have the unique representation through points t6k+2 and t

I
6k+2

in supp µ6k+2, respectively. It implies t6k+2− tI6k+2 = 1
36k+2

. Hence t6k+2 = t6k+1+
1

36k+2
.

If tI6k+2 = t6k+1 +
0

36k+2
is the unique representation, then

#�t(6k + 8)X = 12#�t(6k + 1)X 12F6k+1 < F6k+8.

If tI6k+2 has two representations, then #�tI(6k + 2)X 2#�t(6k + 2). Thus,

#�t(6k + 8)X = 6#�t(6k + 2)X+ 6#�tI(6k + 2)X
(3 + 6)#�tI(6k + 2) 9F6k+2 = F6k+8.tag13

b) If both of tI6k+3 and t
III
6k+3 have two representations through points in supp µ6k+2,

then it implies t6k+2 − tI6k+2 = tII6k+2 − tIII6k+2 = 1
36k+2

. Hence #�tI6k+4X 2#�t6k+4X.
Then we have

F6k+5 #�tI6k+5X = #�tI6k+4X+#�t6k+4X
2#�t6k+4X+#�t6k+4X = 3#�t6k+4X. (14)

It implies #�t6k+4X 1
3F6k+5. Therefore

#�t(6k + 8)X = 2#�tI(6k + 5)X+ 2#�t(6k + 5)X
= 2#�tI(6k + 5)X+ 2#�t(6k + 4)X
(2 +

1

3
)F6k+5 = F6k+8. (15)

2. If y6k+4 = 1, by similar argument as the proof of the cases i W= 2, we have

#�t(6k + 8)X F6k+8.

The proposition is proved.

4. Proof of the main theorem

4.1. Claim. For s ∈ supp µ is defined by s = S(x0), where x0 is in Proposition
3.6, We have α(s) = 2

3 .

Proof. For any n 6, there is k ∈ N such that 6k n 6(k+1). By Proposition 3.7, we

have

9k #�snX 9k+1.

It implies
| log 9k 3−6(k+1)|

6k log 3

| logµn(sn)|
n log 3

| log 9k+1 3−6k|
6(k + 1) log 3

.
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Passing to the limit we get

α(s) = lim
n→∞

| logµn(sn)|
n log 3

=
2

3
.

The claim is proved.

4.2. Claim. α = 1, α = 2
3 .

Proof. For any prime sequence x = (x1, x2, . . . ), for examples x = (x1, x2, . . . ) = (0, 0, . . . ),

we have #�snX = 1 for every n, where sn = n
i=1 3

−ixi. Therefore, by Proposition 2.8 we
get

α = α(s) = lim
n→∞

| logµn(sn)|
n log 3

= 1,

where s = S(x).

From Claim 4.1 we have

α
2

3
.

For any n ∈ N , n = 6k + i, k ∈ N, i = 0, 1, 2, 3, 4, 5, we have

#�tnX = #�t6k+iX 54F6k = 6.9
k.

Hence, µn(tn) = µ6k+i(t6k+i) 3−(6k+i)6.9k = 2.3−4k+(1−i). We have

lim
n→∞

| logµ6k+i(t6k+i)|
(6k + i) log 3

lim
n→∞

| log 2.3−4k+(1−i)|
(6k + i) log 3

=
2

3
(16)

for all i = 0, 1, 2, 34, 5, where tn be n - partial sum of t. So we get

α
2

3
.

Therefore

α =
2

3
.

The claim is proved.

To complete the proof of our Main Theorem it remains to prove the following claim.

4.3. Claim. For any β ∈ ( 23 , 1) there exists s ∈ supp µ for which α(s) = β.

Proof. Since β ∈ (23 , 1), there is r ∈ (0, 1) such that β = 2
3r + (1 − r)1 = 1 − r

3 . For

i = 1, 2, . . . , define

ki =
6i if i is odd;

[6i(1−r)r ] if i is even.

Let nj =
j
i=1 ki and let

Ej = {i : i j and i is even} ; Oj = {i : i j and i is odd},
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ej =
i∈Ej

ki ; oj =
i∈Oj

ki.

Then

nj = oj + ej .

Similar proof as the proof of Claim 3.2 in [11], we get

lim
j→∞

j

nj
= 0 ; lim

j→∞
nj−1
nj

= 1 and lim
j→∞

oj
nj
= r.

We define s ∈ supp µ by s = S(x), where

x = (1, 1, 1, 1, 0, 0

k1=6

0, 0, . . . , 0

k2

1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0

k3=18

0, 0, . . . , 0,

k4

. . . ). (17)

Note that, for i ∈ Oj , we have #�skiX = F6i = 9i. For s ∈ supp µ is defined by x in (16)
and for nj−1 n < nj , by the multiplication principle, we have

i∈Oj−1

#�skiX #�snX
i∈Oj

#�skiX.

Hence, by Claim 3.4 yield

9
Oj−1
6 #�snX 9

Oj
6 ,

which implies

log 9
Oj−1
6

nj log 3

log#�snX
n log 3

log 9
Oj
6

nj−1 log 3
.

Hence

lim
n→∞

log#�snX
n log 3

=
r

3
.

Therefore

α(s) = lim
n→∞

| log#�snX3−n|
n log 3

= 1− lim
n→∞

log#�snX
n log 3

= 1− r
3
= β.

The claim is proved.

From Claim 4.2 and 4.3 the Main Theorem follows
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