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STABILITY OF THE ELASTOPLASTIC THIN

ROUND CYLINDRICAL SHELLS SUBJECTED TO

TORSIONAL MOMENT AT TWO EXTREMITIES

Dao Van Dung, Hoang Van Tung

Department of Mathematics, College of Sciences, VNU

Abstract. An elastic stability problem of the thin round cylindrical shells subjected to

torsional moment at two extremities has been investigated in the paper [6]. By the small

elastoplastic deformation theory and by the flow theory, this problem again has been

studied in [2] and [4]. Basing on the theory of elastoplastic processes the above mentioned

problem has been solved by approach simulation of instability form of the cylinder (see

[1],[5]). In this paper, the solution of problem in the real bending form of structure has

been found. We have also established the relations for determining critical force. Some

numerical results for a linear hardening material have been given and discussed.

1. Stability problem of cylindrical shell

Let us consider a thin round cylindrical shell of strength L, thickness h and radius

of the middle surface equal to R. We choose a orthogonal coordinate system Oxyz so that

axis x lies along the generatrix of cylindrical shell while y = Rθ with θ- the angle circular

arc and z in direction of the normal to cylindrical shell.

Suppose that cylindrical shell has the simply supported boundary constraints at

x = 0, x = L and subjected to torsion by a couple of moments Mk = 2πR2hp, p = p(t)

with t-loading parameter. Moreover, we assume that material is incompressible and don’t

take into account the unloading in the cylindrical shell. We have to find the critical values

t = t∗ and p∗ = p(t∗) which at that time an instability of the structure appears. We use
the criterion of bifurcation of equilibrium states to study the proposed problem.

2. Fundamental equations of the stability problem

2.1. Pre-buckling process

At the any moment in the pre-buckling state, we have

σ12 = −p , σij = 0 ∀i W= 1 , j W= 2.
σu =

√
3|σ12| =

√
3p.

The components of the strain velocity tensor determined respectively

ε̇12 = − 3ṗ
2φI

, ε̇ij = 0 ∀i W= 1, j W= 2 , φI ≡ φI(s).
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The arc-length of the strain trajectory is calculated by the formula

ds

dt
=

2√
3
|ε̇12| =

√
3ṗ

φI
.

It is seen from here that φ(s) =
√
3p or s = φ−1(

√
3p).

2.2. Post-buckling process and boundary conditions

The system of stability equations of the thin cylindrical shell established in [1,5] are

written in form

α1
∂4δw

∂x4
+ α3

∂4δw

∂x2∂y2
+ α5

∂4δw

∂y4
− 9

h2N
−2p∂

2δw

∂x∂y
+
1

R

∂2ϕ

∂x2
= 0; (2.1)

β1
∂4ϕ

∂x4
+ β3

∂4ϕ

∂x2∂y2
+ β5

∂4ϕ

∂y4
+
N

R

∂2δw

∂x2
= 0, (2.2)

where

α1 = 1, α3 = 1 +
φI

N
, α5 = 1;

β1 = 1, β3 = 3
N

φI
− 1, β5 = 1;

φI = φI(s), N =
σu
s
.

The simply supported boundary conditions give us

δw
x=0,x=L

= 0,
∂2δw

∂x2 x=0,x=L
= 0. (2.3)

3. Solving method

From the experimental results (see [2]) and the similar form of solution in [3], we

find the real deflection δw in form

δw = A1 cos
πx

L
cos

n

R
(y + γx), (3.1)

where γ is the tangent of skew angle of summit of waves in comparison with the generatrix

of cylindrical shell, n-number of waves in direction of round arc. The just chosen solution

satisfies the simply supported boundary condition in the sense of Saint-Venant at x =

0, x = L. In fact,

2πR

0

δw(0, y)dy =
2πR

0

A1 cos
ny

R
dy = 0

2πR

0

δw(L, y)dy = −
2πR

0

A1 cos
n

R
(y + γL)dy = 0

2πR

0

∂2δw

∂x2
(0, y)dy = −

2πR

0

A1
π

L

2

+
nγ

R

2

cos
ny

R
dy = 0

2πR

0

∂2δw

∂x2
(L, y)dy =

2πR

0

A1
π

L

2

+
nγ

R

2

cos
n

R
(y + γL)dy = 0



26 Dao Van Dung, Hoang Van Tung

In order to solve advantageously the problem, we rewrite the expression of δw in form

δw =
A1
2
cos

ny

R
+mx +

A1
2
cos

ny

R
+ jx , (3.2)

where

m =
nγ

R
+
π

L
, j =

nγ

R
− π

L
.

Now we find the particular solution ϕ of equation (2.2) in form

ϕ = B1 cos
ny

R
+mx +B2 cos

ny

R
+ jx . (3.3)

Substituting (3.2), (3.3) into (2.2) and comparing the coefficients of cos ny
R +mx and

cos ny
R + jx , we obtain B1 = A1B01, B2 = A1B02 where

B01 =
Nm2

2R

1

β1m4 + β3m2 n
R

2
+ β5

n
R

4 ;

B02 =
Nj2

2R

1

β1j4 + β3j2
n
R

2
+ β5

n
R

4 .

Putting δw and ϕ into (2.1) and because of the condition on the existence of non-trivial

solution, we get

9np

h2NR
=
α1m

3

2
+
α3m

2

n

R

2

+
α5
2m

n

R

4

+
9mB01
h2NR

; (3.4)

9np

h2NR
=
α1j

3

2
+
α3j

2

n

R

2

+
α5
2j

n

R

4

+
9jB02
h2NR

. (3.5)

We receive from here the expression for determining critical load

α1m
3

2
+
α3m

2

n

R

2

+
α5
2m

n

R

4

+
9mB01
h2NR

=
α1j

3

2
+
α3j

2

n

R

2

+
α5
2j

n

R

4

+
9jB02
h2NR

.

Substituting the expression of B01 and B02 into the just obtained equation, we have

α1m
3

2
+
α3m

2

n

R

2

+
α5
2m

n

R

4

+
9m3

2R2h2
1

β1m4 + β3m2 n
R

2
+ β5

n
R

4 =

=
α1j

3

2
+
α3j

2

n

R

2

+
α5
2j

n

R

4

+
9j3

2R2h2
1

β1j4 + β3j2
n
R

2
+ β5

n
R

4 (3.6)

Remarks

a) If material is elastic, i.e. N = 3G, φI = 3G, we get

α1 = α5 = 1, α3 = 2; β1 = β5 = 1, β3 = 2.
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The expression (3.4) and (3.5) are of the form

2p

3G
=
(m2R2 + n2)2

9mnR

h

R

2

+
m3R3

n(m2R2 + n2)2
,

2p

3G
=
(j2R2 + n2)2

9jnR

h

R

2

+
j3R3

n(j2R2 + n2)2
.

These results coincides with the previous well-known ones (see [2]).

b) If material is small elasto-plastic i.e. φI = Et, N = Ec, then

α1 = α5 = 1, α3 = 1 +
Et
Ec
; β1 = β5 = 1, β3 = 3

Ec
Et
− 1 .

The expression (3.4) and (3.5) return to the results presented in [2].

4. Linear hardening material

In this case, we have

φI ≡ g = const, σu = 3Gs0 + (s− s0)φI = gs+ (3G− g)s0 .

Putting λ = (3G− g)s0, we obtain σu = gs+ λ,

α1 = α5 = 1, α3 = 1 +
φI

N
= 1 +

gs

σu
=
2gs+ λ

gs+ λ

β1 = β5 = 1, β3 = 3
N

φI
− 1 = 3σu

gs
− 1 = 2 + 3λ

gs
.

Substituting these values into (3.6), we obtain equation

a1 +
a2s

gs+ λ
+

a3gs

a4gs+ a5
= b1 +

b2s

gs+ λ
+

b3gs

b4gs+ b5
, (4.1)

where

a1 =
1

2
m3 +

1

2
m

n

R

2

+
1

2m

n

R

4

, a5 = 3λm
2 n

R

2

,

a2 =
1

2
mg

n

R

2

, a3 =
9m3

2R2h2
, a4 = m

4 + 2m2 n

R

2

+
n

R

4

,

b1 =
1

2
j3 +

1

2
j
n

R

2

+
1

2j

n

R

4

, b5 = 3λj
2 n

R

2

,

b2 =
1

2
jg

n

R

2

, b3 =
9j3

2R2h2
, b4 = j

4 + 2j2
n

R

2

+
n

R

4

.

Transforming (4.1), we receive three-order algebraic equation of s

As3 +Bs2 + Cs+D = 0, (4.2)
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where

A = b4g
2(a1a4g + a3g + a2a4)− a4g2(b1b4g + b3g + b2b4)

B = b5g(a1a4g+a3g+a2a4)−a5g(b1b4g+b3g+b2b4)+b4g(λa1a4g+λa3g+a1a5g+a2a5)−

−a4g(λb1b4g + λb3g + b1b5g + b2b5)

C = b5(λa1a4g+λa3g+a1a5g+a2a5)−a5(λb1b4g+λb3g+b1b5g+b2b5)+λg(b4a1a5−a4b1b5)

D = λ(a1a5b5 − b1b5a5) .
It is seen that for each given material and each determined value of γ , with n changing

from 1 to k , then we can solve equation (4.2) for finding sn . After that we choose value

smin = min(s1, s2, ..., sk). Finally, the critical load is found by putting smin into the

expression of σu

σumin = φIsmin + (3G− φI)s0 , pmin = 1√
3
σumin .

R/h s.103 σ∗u(Mpa)

25 18.4 750.61

28 11.68 610.83

31 8.3 540.53

34 6.3 498.93

37 4.978 471.43

40 4.061 452.36

43 3.4 438.61

46 2.879 427.77

49 2.48 419.47

52 2.164 413

55 1.907 407.55

58 1.694 403.12

61 1.516 399.42

64 1.366 396.3

67 1.238 393.64

70 1.128 391.35

73 1.032 389.35

76 0.948 387.61

79 0.8745 386.08

Table 1. The results basing on the elasto-plastic theory
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5. Numerical results and discussion

Example 1: Let us consider material with the characteristics as follow 3G =

2, 6.105Mpa ; φI = 0, 208.105Mpa ; γ = 0, 5 ; R = 4 ; L = 10; n from 1 to 14 (L,R, h in

metres). The numerical results basing on the theory of elasto-plastic processes are given

in table 1.

The calculating results based on the elastic theory are presented in table 2. Figure

1 is graph of the elasto-plastic instability case . The comparison between the elasto-plastic

instability and the elastic instability is introduced in figure 2.

R/h s.103 σ∗u(Mpa)

25 16.7 4342

28 14.4 3744

31 12.8 3328

34 11.3 2938

37 10.1 2626

40 9.1 2366

43 8.3 2158

46 7.7 2002

49 7.1 1846

52 6.7 1742

55 6.3 1638

58 5.9 1534

61 5.5 1430

64 5.2 1352

67 4.9 1274

70 4.7 1222

73 4.5 1170

76 4.3 1118

79 4.2 1092

82 4 1042

85 3.8 988

88 3.6 936

Table 2. The calculating results according to the elastic theory
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Example 2: Let us consider material with the characteristics as follows

3G = 2, 6.105Mpa , φI = 0, 208.105Mpa , γ =

√
3

3
, R = 5 , L = 10

The results of calculation are sketched by graphs in figures 3 and 4.

Discussion

The above received results lead us to some remarks as follows

a) The critical loads determined according to the elastic theory are much greater than

those according to the theory of elasto-plastic processes when the thickness of cylin-

drical shell is greater. Because these don’t exactly describe mechanical characteris-

tics, investigating must be based on the theory of elasto-plastic processes for thicker

cylindrical shells.

b) When the slenderness of cylindrical shell reachs a determined value, the difference

between the critical loads found by basing on two theories is very little. Therefore

for the slender cylindrical shells, calculating based on the elastic theory is reliable.

c) The expression of deflection δw in (3.1) has exactly described real bending form of

structure.

This paper is completed with financial support from the National Basic Research

Program In Natural Sciences.
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