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ABSTRACT: Prestack depth migration for seismic reflection data is currently one of the powerful tools for imaging 

complex geological structures such as salt domes, faults thrust belts, and stratigraphy structures. Since the subsurface 

structure generally consists of anisotropic media, when we apply migration to seismic reflection data without 

considering it in large magnitude anisotropic media, it may lead to migration error. Here we present a result of the 

prestack depth migration in anisotropic media using Split-Step-Fourier (SSF) method. SSF method, which is the one of 

wavefield extrapolation migration in frequency-wavenumber domain, is usually to apply migration to seismic reflection 

in post-stack isotropic media when the lateral velocity variations are small. When we apply this to anisotropic problem, 

we should define velocities that depend on incidence angles and compute vertical wavenumber. Here we use vertical 

wavenumber which is directly calculated by the analytical solution of the Christoffel equation instead of using reference 

velocity. According to the numerical model test for a simple geological model including anticline and syncline, the 

prestack depth migration using SSF method in weak anisotropic media shows the subsurface image is similar to the true 

geological model. The anisotropic phase-shift-plus-interpolation (PSPI) is well known that the reference wavefield is 

computed for each pair of anisotropic parameters, Thomsen's parameters, in order to consider anisotropic problem. 

However, the anisotropic SSF directly use variations of Thomsen's parameters using the solution of Christoffel equation. 

 

 

I�TRODUCTIO� 

Seismic migration using ray tracing method is a popular 

method, since ray based-migration produce subsurface 

geological images with relatively fast computation time 

comparing to wave equation method. For 3D seismic 

data, the wave equation based-migration requires large 

computing time and great amount of computer memory, 

therefore, Kirchhoff (Bevc, 1997) and Gaussian beam 

methods (Hill, 1990) are widely used for 3D prestack 

depth migration. Bagaini et al. (1995), Ober et al. 

(1997), and Bonomi et al. (1998) had studied imaging 

the subsurface using massively parallel computers. 

Travel time based-migration depends on ray tracing 

methods. Because of multipath arrivals for migration 

mapping, it is dif cult to calculate accurate travel times 

for complex structure such as salt domes, faults, folds 

and stratigraphic structures. Though Nichols (1996) and 

Notfors et al. (2003) studied the multipath arrival 

problem using maximum energy travel time, it could 

partially solve the problem Migration by wavefield 

extrapolation can accommodate multipath arrivals. 

Although the migration using the two-way wave 

equation methods can produce relatively accurate 

subsurface images, it demands large computing power 

and computing time (Farmer et al., 2002). One-way 

wave equation approaches are almost universally used in 

practice, because of their computational efficiency. Here 

we apply the SSF method to prestack depth migration of 

P-P data for vertical transversely isotropic (VTI) media. 

Since the subsurface is generally anisotropic, if we 

process seismic refection data with ignoring anisotropic 

parameters of the media, we could produce erroneous 

results in area of large anisotropy and dipping layers 

(Larner and Cohen, 1993). The SSF method was 

developed for migration of stacked data with laterally 

varying velocity (Stoffa et al., 1990). Banic (1984), 

Larner (1993), Byun (1984), and Winterstein (1986) 

studied on the data processing and interpretation in 

anisotropy problems. Phase velocity in VTI media varies 

from the propagation direction relative to the direction of 

the symmetry axis. The phase shift method for TI media 

for vertically varying velocity were studied by 

Kitchenside (1991) and Alkhalifah (1993). The Phase 

Shift Plus Interpolation (PSPI) (Gazdag and Sguazzero, 

1984) for TI in laterally varying velocity was studied by 

Le Rousseau (1997). In the SSF method, since the 

laterally varying velocity was de ned by the perturbation 

term of the velocity model, the method works only when 

the perturbation term is less than the average velocity, 

but it is less computing time than PSPI which use the 

same phase shift. SSF is required one time less than 

PSPI for Fourier transformation. 



 316 

WAVE  EQUATIO� A�D  CHRISTOFFEL EQUATIO� 

 The general wave equation for an inhomogeneous and 

anisotropic media is 
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where ρ , 1 2 3( , , )iu u u u= , 1 2 3( , , )if f f f= t , and ijτ  are 

density, displacement vector, body force, time, stress, 

tensor, and cartesian position. The general Hooke's law is 

 

,i ijkl klc eτ = ,                                                                  (2) 

where 
ijklc  is the 4th order stiffness tensor and  kle is 

strain tensor. Assuming stiffness coefficients are 

constants, substitution of eq. (2) into eq. (1) gives the 

general wave equation for linearly elastic, arbitrary 

anisotropic, and homogeneous media as  
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Substitution eq. (4) for a plane harmonic wave, 
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into the homogeneous wave equation without sources of 

elastic energy, we can get Chritoffel equation, 
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where kU is the component of the polarization vector U, 

ω is angular frequency, V is the velocity of wave 

propagation, and n is the unit vector orthogonal to the 

plane wavefront.
ikG is Christoffel matrix, which depends 

on the medium properties. The direction of wave 

propagation is 
ik ijkl j lG c n n= . It can be written in a compact 

form with the Kronecker delta function δik .  
 

 2 0.ik ik kG V Uρ δ − =                                                         (6) 

 

The Christoffel equation describes a 3 x 3 eigenvalue 

( 2vρ ) and eigenvector (U) problem for the symmetric 

matrix G. Since the stiffness matrix for the VTI media is 
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the Christoffel equation becomes 
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The solution of the Christoffel equation (Tsvankin, 

2001) is  
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where "+" corresponds to the vertical P-wave and "- " 

corresponds to the SV-wave. 

SSF I� A�ISOTROPY 

We first review the SSF method for isotropic media of 

Stoffa et. al (1990) and then extend the method to deal 

with anisotropic media. The 2D acoustic wave equation 

with constant density is 

 
2

2 2
0,

j

u
u s

t

∂
∇ − =

∂
                                                           

(10) 

where ( , , )u u x z t=  is pressure, ( , )s s x z=  is slowness of the  

medium. In the frequency domain, eq. (10) becomes 
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 where U is 
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Let the slowness function s(x; z) be divided into a 

reference slowness  term s0(z) and a perturbation term 

4s(x; z), 

 

0( , ) ( ) ( , ).s x z s z s x z= +V                                                    (13) 

 

Substitution of eq. (13) into eq. (11) gives 
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Eq.(14) shows that the homogeneous acoustic wave 

equation has turned into an inhomogeneous one with a 

virtual source S(x,z,ω) term governed the variation of the 

slowness. In the SSF method, it is linearize by ignoring 
2
sV  term. That is by assuming 

0/ 1s s∆ = or the horizontal 

variation velocity is small. The 2sV  term can be ignored, 

but if the horizontal velocity variation is large, the 

subsurface cannot be imaged correctly (Stoffa et al., 1990). 

The Fourier transformation over x of the upgoing wave 

( , , )nU x z ω at an arbitrary depth 
nz  is 
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∞
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where 
xk  is the horizontal wave number. After calculating 

the vertical and horizontal wavenumber with the reference 

slownesses and frequency, and then applying constant 

velocity phase shift, we get 
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where 
0z

k  is the vertical wavenumber, given by 
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The result of inverse Fourier transformation of phase-

shifted 1( , , , )x nU k z z ωV  is 
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Applying the phase shift associated with the perturbation 

term  gives 
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To get the migrated image at depth 1n n nz z z+ = +V , we 

integrate 1( , , )nU x z ω+  from 1ω  to 2ω  at 1nz + , 
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To apply SSF to VTI media, we have to _find the vertical 

wave number 
0z

k  for the VTI medium and it is defined by 

slowness which depends on incidence angle, 
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To find the slowness, 0( ),S θ  requires an additional step. 

Kitchenside  (1991) used a predefined table, which results 

from interpolation over horizontal and vertical 

wavenumber. Here instead of using 2
0 ( )S θ  we directly 

find the vertical wavenumber by analytic solution of 

Christoffel equation. Let the horizontal slowness be 
sin

p
V

θ
=  and vertical slowness be 

cos
q

V

θ
= ; then the 

phase velocity eq. (9) for P- and SV- waves with phase 

angle θ becomes 
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Letting X = q2, yields the following quadratic equation; 
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The solutions for (23) are 
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where the vertical slowness for P wave is 1 1q X= and 

2 2q X= is the vertical slowness for SV wave. Therefore 

we can get the vertical slowness from the known 

horizontal slowness instead of using P- and SV-phase 

velocities and apply phase shift to anisotropic media. 

 

�UMERICAL MODEL TEST 

We performed numerical model test to evaluate the 

performance of the SSF method for prestack depth 

migration in anisotropic and smoothly heterogeneous 

medium. A shot gather was generated by the ray tracing 

method (Alkhalifah, 1993). The anisotropy parameters for 

the model are 0pv  = 2000 m/s, 0sv  = 1200 m/s, ε = 0.2 

and δ = 0.1. The simple geological model has horizontal 

and dipping (18o) reflector segments (Fig. 1), the 

dimension of the model is 1.5 km by 1 km.  
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Figure 1 A simple subsurface structural model of horizontal 

and dipping (18◦ ) reflector segment. 

 

The shot is positioned at 400 Figure 1: A simple 

subsurface structural model of horizontal and dipping 

(18_) reflector segment. m, with receiver spread starting 

at 0 and ending at 120 m with spacing of 10 m. The 

sampling interval is 4 ms, record length is 1.2 s, and major 

source frequency is 20 Hz. Fig. 2(a) is the result by SSF 

method with anisotropy parameters when the vertical 

velocity gradient is 0.5 1s− . Fig. 2(b) is the result ignoring 

anisotropic parameters. A comparison of Fig. 2(a) and Fig. 

2(b) shows that the horizontal and the dipping reflectors 

are imaged differently from the true model. Fig 2(c) is the 

result by PSPI with anisotropic parameters. Both of SSF 

and PSPI results show that the subsurface was imaged 

well with anisotropic parameters. Though two methods 

use phase shift kernel and the imaged subsurface are 

similar to each other, the computing time for a single 

image is 1 sec for SSF and 8 sec for PSPI (Table 1). The 

computer machine is P4 2.0 GHz with dual processor. 

Two methods were parallelized by parallel virtual 

machine (PVM) library. In order to verify SSF migration 

effects depending on different velocity gradient, we 

conducted a numerical model test for velocity models 

with lateral as well as vertical variation. The vertical 

velocity gradient is 0.5 1s−  and lateral velocity gradients 

are 0.1, 0.3, and 0.5. Fig. 3 is one of the velocity models, 

when the lateral velocity gradient is 0.3 1s− . Fig. 4 shows 

the result of prestack migration due to the lateral velocity 

variation.  

 
 

(a) 

 

(b) 

 

 
(c) 

 

Figure 2 The results of anisotropy SSF migration for a single 

shot gather: (a) Result of SSF method using exact anisotropic 

parameters; (b) Result of SSF method without considering the 

anisotropic effects: (c) Result of PSPI using exact anisotropic 

parameters. 

Fig. 4 (a). (c) are the results for lateral velocity gradients 

of 0.1, 0.3, and 0.5 1
s
− , respectively. Fig. 4(a) is the result 

of SSF method when the lateral velocity gradient is 0.1 
1

s
− , Fig. 4(b) is the result of SSF method when the lateral 

velocity gradient is 0.3 1s− , Fig. 4(c) is the result of SSF 

method when the lateral velocity gradient is 0.5 1
s
− . 

These show that the subsurface images have migration 

error when the lateral velocity gradient is large. Another 

simple geological model (Fig. 5) consists of three 

homogeneous layers, with 0 2000,  2500pv = , and 3000 m/s, 

0sv = 667, 1250, and 2000 m/s, and ε = 0.2, and δ = 0.05. 

The model dimension is 3 km by 2 km. 

 

Figure 3 Vp velocity model. Vertical velocity gradient is 

0.5
1s−

and horizontal velocity gradient is 0.3 
1s−

. 



 319 

 

Table 1: Computing machine and computing time for SSF and 

PSPI. 

SSF with PVM VTI media 

1 shot been _nished in 1.000000 seconds, Ntask=4 

PSPI with PVM VTI media 

1 shot been _nished in 8.000000 seconds, Ntask=4 

xcdp.kigam.re.kr machine 

processor : 0 
cpu MHz : 2009.009 

cache size : 512 KB 

bogomips : 3986.55 

 

For the prestack depth migration using the SSF method, 

45 shot gathers were generated with 50 m shot spacing 

and 10 m receiver spacing. The results of anisotropic and 

isotropic SSF migration for a single shot when the source 

is set at 2.5 km are shown Fig. 6(a) and (b). Fig. 6(a) 

shows that the result of the SSF method with anisotropic 

parameters, Fig. 6(b) is the result of the SSF method with 

isotropic parameters. With comparing two results, Fig. 

6(a) is similar to the true geological model and then Fig. 

6(b) show a little bit different reflector position from there 

in the true model. Fig. 7 shows migration results for the 

45 shot gathers. Fig. 7(a) is with the true anisotropy 

parameters and Fig. 7(b) is ε and δ set at zero. Fig. 7(c) is 

the result of PSPI method with anisotropic parameters. 

Since the velocity model is defined by reference velocity 

for the vertical and perturbation term, and ignored the 2
nd

 

order perturbation term the computing time is fast, but in 

case of horizontal variation velocity is large or strong 

anisotropy, the subsurface image is incorrect. Therefore, 

for the  velocity model with large lateral variation, PSPI 

could be a better imaging tool, though the computing time 

is needed more than SSF.  

 

CO�CLUSIO� 

We performed prestack migration by SSF for VTI media. 

To apply the SSF method to VTI media, we used the 

vertical wave number calculated directly from the 

Christoffel equation instead of using velocity function that 

depends on incidence angle. We showed the migration 

results for the seismic reflection data for VTI media have 

migration errors for ignoring anisotropy, especially in 

imaging dipping reflectors. For the velocity model with 

only vertical velocity variation, the SSF produced an 

image similar to that of the PSPI image and saved the 

computing time about 1 of 8. The numerical model test for 

the velocity model with vertical and horizontal variation 

the subsurface was imaged correctly.  
 

 

 
 

(a) 

 
(b) 

 
(c) 

 

Figure 4 SSF migration results with horizontal as small as 
vertical  velocity gradient. (a) horizontal velocity gradient is 0.1, 

(b) 0.3 and (c) 0.5. 

  
 

Figure 5 A simple geological model with ε = 0:2 and δ = 0:05. 
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(a) 

 
(b) 

 

Figure 6 Migration results of a single shot gather when the 

source is set at 2.5 km: (a) with anisotropic parameters,(b) with 

isotropic parameters. 

 

 

 
(a) 

 
 

 

 
(b) 

 
(c) 

 

Figure 7 Anisotropic SSF results with 45 shot gathers: (a) with 

anisotropic parameters, (b) with isotropic parameters, (c) by 

PSPI method with anisotropic parameters. 
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