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POLYNOMIAL APPROXIMATION ON POLYDISKS

Kieu Phuong Chi

Department of Mathematics, Vinh University

Abstract. In this paper we give results about polynomial approximation on the closed

polydisk in Cn.

1. Introduction

Let X be a compact subset of Cn. By C(X) we denote the space of all continuous
complex-valued functions on X, with norm ,f,X = max{|f(z)| : z ∈ X}, and let P (X)
denote the closure of set of polynomials in C(X). The polynomially convex hull of X will

be denoted by X̂ and difined by

X̂ = {z ∈ Cn : |p(z)| ,p,X for every polynomial p}.
X is called polynomially convex if X = X̂. One necessary condition for P (X) = C(X) is

X is polynomially convex.

Let M be real manifold in Cn. We say that M has totally real if M has no complex

tangent vectors, i.e. (TaM) ∩ i(TaM) = {0}. It is well-known that every continuous
function on compact subset X of totally real manifold M is the uniform limit of sequence

of polynomials, i.e. P (X) = C(X).

Let D be small closed polydisk in Cn, centered at the origin and f1, f2, ..., fm ∈
C(D) By [z1, z2, ..., zn, f1, f2, ..., fm;D] we denote the function algebra consisting of uni-

form limits on D of all polynomials in z1, z2, ..., zn and f1, f2, ..., fm. The problem is that

to find conditions of f1, ..., fm such that [z1, z2, ..., zn, f1, f2, ..., fm;D] = C(D). J.Wermer,

Nguyen Quang Dieu, P.J. de Paepe,... have many results if D is disk. Nguyen Quang

Dieu and P.J. de Paepe have shown that [z, f(z);D] =C(D) for some choices of f , while

for other choices of f to have [z, f(z);D] W= C(D) (see [4], [5], [6], [7] ). In the general,

H. Alexander and J.Wermer [1] ( Theorem 17.5) used the result about approximation of

totally real manifold to proved the following results.

Theorem 1.1. Suppose R1(z), ..., Rn(z) are complex-value continuoustly differentiable

function on D satisfy conditions

|R(z)−R(zI)| k|z − zI| ∀z, zI ∈ D,
where 0 k < 1, R(z) = (R1(z), ..., Rn(z)) and |w| = |w1|2 + ...+ |wn|2 with w =

(w1, ..., wn) ∈ Cn. Then
[z1, ..., zn, z1 +R1(z), ..., zn +Rn(z);D] = C(D).
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The line of proof of Wermer is to prove the graph

X = {(z1, ..., zn, z1 +R1(z), ..., zn +Rn(z)) : z = (z1, ..., zn) ∈ D}

is totally real manifold. In this paper we give the generalize result of Wermer. But the

line of proof is not the same of Wermer’s, because most of our graph is not totally real at

the origin. Our proof use the theorem of Stout [3]:

Theorem 1.2. Suppose that:

(1) X1 and X2 are compact subsets of Cn with P (X1) = C(X1) and P (X2) =

C(X2);

(2) Y1 and Y2 are polynomially convex subsets of C such that 0 is boundary point
of both Y1 and Y2 , and Y1 ∩ Y2 = 0;

(3) p is a polynomial such that p(X1) ⊂ Y1 and p(X2) ⊂ Y2;
(4) p−1(0) ∩ (X1 ∪X2) = X1 ∩X2. Then P (X1 ∪X2) = C(X1 ∪X2).
For an extensive survey on Stout’s theorem and its proof we refer the reader to [7]

and [10], for basis materrial on polynomial convexity and totally real manifold the readers

may consult [1] and [2].

Acknowledgments. The author wishes to express his thank to Dr. Nguyen Quang Dieu

for suggesting the problem and for many stimulating conversations.

2. The main results

We now come to the main results of the paper.

Theorem 2.1. Let k1, k2, ..., k2n be positive integers and gcd(ki, kj) = 1 (ki, kj are co-

prime), ∀i W= j and D is sufficiently small polydisk centered at the origin in Cn. Let
R : Cn → Cn be a function satisfying conditions

1) R(z) = (R1(z), ..., Rn(z)) with Ri(z) is continuoustly differentiable functions on

D;

2) R(z) = o(|z|);
3) |R(z)−R(zI)| M |z − zI|,∀z, zI ∈ D where 0 M < 1.

Then

[zk11 , ..., z
kn
n , (z1 +R1)

kn+1 , ..., (zn +Rn)
k2n ;D] = C(D).

Remark. The graph

X = {(zk11 , ..., zknn , (z1 +R1(z))kn+1 , ..., (zn +Rn(z)k2n) : z = (z1, ..., , zn) ∈ D}

is not totally real at the origin if there exists kn+i W= 1. (see [2], p. 2 ). By Theorem 2.1

it is polynomially convex if D small enough.

We need the following proposition.
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Proposition 2.2. Let X be a compact subset of Cm, and let π : Cm → Cm be difined

by

π(z1, z2, ..., zm) = (z
k1
1 , z

k2
2 , ..., z

km
m ).

Let π−1(X) = X1,1,...,1 ∪ ... ∪Xi1,i2,....,im ∪ ... ∪Xk1,k2,...,km , with X1,1...,1 compact, and

Xi1,i2,...,im = {(ρi1−1k1
z1, ρ

i2−1
k2

z2, ..., ρ
im−1
km

zm) : (z1, z2, ..., zm) ∈ X1,1,...,1}

for 1 i1 k1, ..., 1 im km, where ρkj = exp(
2πi
kj
) with j = 1, ...,m. If P (π−1(X)) =

C(π−1(X)), then P (X) = C(X).

Lemma 2.3. Suppose Xi1,i2,...,im are difined as in proposition 2.2 and let

Q(z1, z2, ..., zm) = aj1,...,jmz
j1zj2 ...zjm

by a polynomial in m variables. For each Xi1,i2,...,im with 1 i1 k1,..., 1 im km
put

Qi1,i2,...,im(z1, ..., zm) = Q(ρ
i1−1
k1

z1, ..., ρ
im−1
km

zm).

Then
1

k1k2...km
Qi1,...,im(z1, ..., zm) = ap1k1,...,pmkmz

k1p1
1 ...zkmpmm .

Proof. First, we assume that Q has the form Q(z1, ..., zm) = az
s1
1 ...z

sm
m . We have

1

k1k2...km
Qi1,...,im(z1, ..., zm) =

a

k1...km
zs11 ...z

sm
m

1 i1 k1,...,1 im km

ρ
(i1−1)s1
k1

...ρ
(im−1)sm
km

=
a

k1...km
zs11 ...z

sm
m

m

j=1 1 ij kj

(ρ
sj
kj
)ij−1 .

If there exists 1 j m such that sj W= pjkj then

1 ij kj

(ρ
sj
kj
)ij−1 =

(ρ
sj
kj
)kj − 1

ρ
sj
kj
− 1 =

(ρ
kj
kj
)sj − 1

ρ
sj
kj
− 1 = 0,

where ρ
kj
kj
= (exp 2πikj )

kj − 1 = 0. We obtain

1

k1k2...km
Qi1,...,in(z1, ..., zm) = 0.

In the case sj = pjkj , ∀1 j m we have

1 ij kj

(ρ
sj
kj
)ij−1 =

1 ij kj

(ρ
kj
kj
)pj(ij−1) = kj .
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We conclude that

1

k1k2...km
Qi1,...,im(z1, ..., zm) =

a

k1...km
zs11 ...zm

sm

m

j=1

kj = az
p1k1
1 ...zpmkmm .

Since every polynomial Q can write that the finitely sum of azs11 ...z
sm
m , we have

1

k1k2...km
Qi1,...,im(z1, ..., zm) = ap1k1,...,pmkmz

k1p1
1 ...zkmpmm .

Proof of proposition 2.2.

Let f ∈ C(X). Then f ◦π ∈ C(π−1(X)), so there is a polynomial Q in two variables,
with f ◦ π ∼ Q on π−1(X). In particular, this is true for Xi1,i2,...,im , so

f(zk11 , ..., z
km
m ) ∼ Q(ρi1−1k1

z1, ..., ρ
im−1
km

zm) = Qi1,...,im(z1, ..., zm) on X1,...,1.

It follows that

f(zk11 , ..., z
km
m ) ∼ 1

k1...km
Qi1,...,im(z1, ..., zm) on X1,...,1.

By Lemma 2.3 if

Q(z1, ..., zm) = ar1,...,rmz
r1
1 ...z

rm,
m

then the right hand side to equals ap1k1,...,pmkmz
k1p1
1 ...zkmpmm , so equals to P (zk11 , ..., z

km
m ),

where P is a polynomial in m variables. We conclude that

f(zk11 , ...z
km
m ) ∼ P (zk11 , ...zkmm ) on X1,...,1.

That is f ∼ P on X. So P (X) = Q(X).

Proof of Theorem 2.1. First we show that the functions

zk11 , ..., z
kn
n , (z1 +R1(z))

kn+1 , ..., (zn +Rn(z))
k2n

separate points near the origin. Indeed, let a = (a1, ..., an), b = (b1, ...bn) ∈ D and a W= b.
Since a W= b there exist 1 i n such that ai W= bi. If bi W= ai exp(2sπiki

), 1 s ki − 1
then zkii separates ai, bi.

Next if bi = ai exp(
2sπi
ki
) we show that (zi+Ri(z))

k+i separates them. Now assume

that (z +Ri(z))
kn+i take the same value at ai and bi. We have

(ai +Ri(a))
kn+i = (bi +Ri(b))

kn+i .

We obtain

ai +Ri(a) = (ai exp(
2rπi

ki
) +Ri(b)) exp(

2tπi

kn+i
)
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for some 1 r ki − 1 and 1 t kn+i. It follows that

ai 1− exp(2rπi
ki

) exp(
2tπi

kn+i
) = (−Ri(a) +Ri(b) exp( 2tπi

kn+i
)).

Dividing both sides by ai we obtain

1− exp(2rπi
ki

) exp(
2tπi

kn+i
) =

−Ri(a) +Ri(b) exp( 2tπikn+i
)

ai.

By the coprimeness of ki and kn+i we see that
r
ki
+ t
kn+i

is not integer for all 1 r ki−1
and 1 t kn+i, so 1− exp(2rπiki

) exp( 2tπikn+i
) W= 0. Using the fact that R(z) = o(|z|) we

arrive at a contradiction if we choose the polydisk D sufficiently small.

Next, suppose that polynomial map π : C2n → C2n is defined by π(z1, ..., z2n) =
(zk11 , ..., z

k2n
2n ). We put

X = {(zk11 , ..., zknn , (z1 +R1(z))kn+1 , ..., (zn +Rn(z)k2n) : z = (z1, ..., zn) ∈ D}.

Then we have π−1(X) = ∪Xi1,...,i2n with

Xi1,...,i2n =

= { ρi1−1k1
z1, ..., ρ

in−1
kn

zn, ρ
in+1−1
kn+1

(z1 +R1(z)), ..., ρ
i2n−1
k2n

(zn +Rn(z)) : (z1, ..., zn) ∈ D}.
Therefore by Theorem 1.1

P (Xi1,...,i2n) = C(Xi1,...,i2n)

for all 1 i1 k1,..., 1 i2n k2n. We show that P (π
−1(X)) = C(π−1(X)). To do this,

we consider the polynomial

p(z1, ..., zn, zn+1, ..., z2n) = z1...zn.zn+1...z2n.

We obtain

p(Xi1,...,i2n) = {ρi1−1k1
...ρi2n−1k2n

(|z1|2 + z1R1(z))...(|zn|2 + znRn(z)) : (z1, ..., zn) ∈ D}.

We see that the sets p(Xi1,...,i2n) are contained in an angular sector at 0, situated near the

half line through 0 with argument 2π( i1−1k1
+ ... + i2n−1

k2n
). By the comprimeness of ki, kj

for all i W= j we obtain
i1 − 1
k1

+ ...+
i2n − 1
k2n

W= j1 − 1
k1

+ ...+
j2n − 1
k2n

with is − 1 W= js − 1 for some 1 s 2n. It follows that

p(Xi1,...,i2n) ∩ p(Xj1,...,j2n) = {0}



Polynomial approximation on polydisks 15

and

p−1(0) ∩ (Xi1,...,i2n ∪Xj1,...,j2n) = (Xi1,...,i2n ∩Xj1,...,j2n) = (0, ..., 0)
for all 1 i1, j1, k1,...,1 i2n, j2n, k2n with is W= js for some 1 s 2n.

Furthermore, it is easy to see that C \ p(Xi1,...,i2n) is connected set if D suffciently

small, so p(Xi1,...,i2n) is polynomially convex [3]. Applying Stout’s theorem repeatedly, we

obtain

P (π−1(X)) = C(π−1(X)).

By proposition 2.2 we conclude that P (X) = C(X), or equivalently

[zk11 , ..., z
kn
n , (z1 +R1)

kn+1 , ..., (zn +Rn)
k2n ;D] = C(D).

The theorem is proved.
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