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POLYNOMIAL APPROXIMATION ON POLYDISKS

Kieu Phuong Chi
Department of Mathematics, Vinh University

Abstract. In this paper we give results about polynomial approximation on the closed
polydisk in C".

1. Introduction

Let X be a compact subset of C". By C'(X) we denote the space of all continuous
complex-valued functions on X, with norm || f||x = max{|f(z)|: z € X}, and let P(X)
denote the closure of set of polynomials in C'(X). The polynomially convex hull of X will
be denoted by X and difined by

X ={2eC":|pz)| <|lp|x for every polynomial p}.

X is called polynomially convex if X = X. One necessary condition for P(X) = C(X) is
X is polynomially convex.

Let M be real manifold in C™. We say that M has totally real if M has no complex
tangent vectors, i.e. (T,M) N i(T,M) = {0}. It is well-known that every continuous
function on compact subset X of totally real manifold M is the uniform limit of sequence
of polynomials, i.e. P(X) = C(X).

Let D be small closed polydisk in C", centered at the origin and fi, fa,..., fm €
C(D) By [z1,22y -y Zn, f1, f2, -y fm; D] we denote the function algebra consisting of uni-
form limits on D of all polynomials in z1, 23, ..., 2, and f1, fa, ..., fin. The problem is that
to find conditions of fi, ..., fi, such that [z1, 22, ..., Zn, f1, f2, vy frn; D] = C(D). J. Wermer,
Nguyen Quang Dieu, P.J. de Paepe,... have many results if D is disk. Nguyen Quang
Dieu and P.J. de Paepe have shown that [z, f(z); D] =C(D) for some choices of f, while
for other choices of f to have [z, f(z); D] # C(D) (see [4], [5], [6], [7] ). In the general,
H. Alexander and J.Wermer [1] ( Theorem 17.5) used the result about approximation of
totally real manifold to proved the following results.

Theorem 1.1. Suppose Ri(z),..., R,(z) are complex-value continuoustly differentiable
function on D satisfy conditions

|R(z) — R(2")| < klz — 2| Vz,7 €D,

where 0 < k < 1, R(2) = (R1(2), ..., Rn(2)) and |w| = /|wi]? + ... + Jwy[* with w =
(w1, ...,wy) € C*. Then

(21, s 20, 21 + R1(2), ., Zn + Rn(2); D] = C(D).
Typeset by ApMS-TEX
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The line of proof of Wermer is to prove the graph
X ={(z1,-.,2n, 21 + R1(2), ..., Zn + Rn(2)) : 2 = (21, ..., 2n) € D}

is totally real manifold. In this paper we give the generalize result of Wermer. But the
line of proof is not the same of Wermer’s, because most of our graph is not totally real at
the origin. Our proof use the theorem of Stout [3]:

Theorem 1.2. Suppose that:

(1) X; and Xy are compact subsets of C" with P(X;) = C(X;) and P(X3) =
C(X2);

(2) Y1 and Y are polynomially convex subsets of C such that 0 is boundary point
of both' Yy and Y5 , and Y1 NYs = 0;

(3) p is a polynomial such that p(X;) C Y1 and p(Xs3) C Ya;

(4) p_l(O) N (Xl UXQ) = X1 NXs. Then P(Xl @] Xg) = C(Xl U X2)

For an extensive survey on Stout’s theorem and its proof we refer the reader to [7]
and [10], for basis materrial on polynomial convexity and totally real manifold the readers
may consult [1] and [2].

Acknowledgments. The author wishes to express his thank to Dr. Nguyen Quang Dieu
for suggesting the problem and for many stimulating conversations.

2. The main results
We now come to the main results of the paper.

Theorem 2.1. Let ki, ko, ..., ks, be positive integers and ged(k;, kj) = 1 (k;, k; are co-
prime), Vi # j and D is sufficiently small polydisk centered at the origin in C"™. Let
R : C* — C™ be a function satisfying conditions

1) R(z) = (R1(2), ..., Rn(2)) with R;(z) is continuoustly differentiable functions on
D;

2) R(z) = o(|2]);

3) |R(z) — R(2")| < M|z — 2'|,Vz,2' € D where 0 < M < 1.
Then

(280, 2k (7T + R)* 1, L, (Z7 + Rn)*; D] = C(D).

ey Ry

Remark. The graph
X ={(z, .., 2k (ZT + Ri(2))F 1, ..., (B + Ru(2)*") : 2 = (21, ..., , 20) € D}

is not totally real at the origin if there exists k,4; # 1. (see [2], p. 2 ). By Theorem 2.1
it is polynomially convex if D small enough.
We need the following proposition.
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Proposition 2.2. Let X be a compact subset of C™, and let 7 : C™ — C™ be difined

by

( ki1 k2 km)'

(21,22, ey Zm) = (211, 252, ooy Zpt

Let (X)) =X11,..1U...UX; U .. U Xk, ko, ko> With X5 1.1 compact, and

177:21-~~~1'im

X

. {( i1—1 ip—1 Gom —1
11,2255

pkl Zl,pk2 2, ’pk m) : (Zl, 2y eeny Zm) € X1717m’1}

for 1 <y < ki, ..., 1 <y < ki, where py,; = exp(% ’) with j = 1,...,m. If P(n7}(X)) =
C(r~ (X)), then P(X) = C(X).

Lemma 2.3. Suppose X; are difined as in proposition 2.2 and let

1,225-5tm

Q(z1,22, ey Zm) = Z Qjy . g 20272 20m

by a polynomial in m variables. For each X, ;,... .., With 1 < i1 < ki,..., 1 <'ipy, < ki
put
1 .771,_1
Qirsinsornsim (215 s 2m) = QUL 21, ooy pi " 2m).

Then
E _ § k1p1 k
Qlla Jim 217"" - ap1k17 7pmk Zl "mepm'
klkz

Proof. First, we assume that @ has the form Q(z1, ..., 2m) = azi*...z5m. We have

1 a m (Z —]_)s (im—l)Sm
m ZQil,..A,’im (zla -.-;zm) = klkm zfl...zfn Z pkll 1 ] pkm

1<k, 1SEm Sk

~ gt I E o)

1<i; <k;

If there exists 1 < j < m such that s; # p;k; then

SNk, Kivs:
RN e S b
pkj - Sj_l - S]—]. - Y
P;

1<i;<k; Pr;

where pk = (exp 27”) i —1=0. We obtain

1
m Z Qil"“:in (217 i) Zm) =0.

In the case s; = p;k;, V1 < j < m we have

Z (PZi)ij_l — Z (pZ;)pj(ij—l) = k;.
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We conclude that

i (215 00y 2m) = e _azplkl yPmbm
k:lk:2 Km 2 Qisyen (715 s 2m) k.. k H m
Since every polynomial @) can write that the finitely sum of azj*...z5™, we have

. Z !
( ) 2 1P1 kmpm
T,y 'lm 1 E a k gerey mkm z 2 .
klkg...k?m ! ’ P P 1 m

Proof of proposition 2.2.
Let f € C(X). Then for € C(7~ (X)), so there is a polynomial Q in two variables,

with fom ~ Q on 7~1(X). In particular, this is true for X; SO

1,825 y8m

f(zfl, ) Zﬁlm) Q(pi;ll_lzb ,pZm—l ) = Qi17~-~7im (Zla ooy Zm) on Xl,...,l-

It follows that

1
f(zfl’w’zﬁm)wkl...k ZQil ..... im (215 ey 2m) on X1, 1.
By Lemma 2.3 if

Q(21y ey 2m) = Zam 77777 o P e 2

then the right hand side to equals ) ap, ky,....py ke 2P kim0 equals to P(2 ..., 2km),

where P is a polynomial in m variables. We conclude that

22k ~ P2 2Fn) on Xy,

That is f ~ P on X. So P(X) = Q(X).

Proof of Theorem 2.1. First we show that the functions

202k (ZT 4 Ri(2))P, L (Fn 4 Ra(2))ker

separate points near the origin Indeed, let a = (ay,...,a,),b = (b1,...b,) € D and a # .
Since a # b there exist 1 < 7 < n such that a; # b;. If b; # q; exp(2””) 1<s<k—1
then zk' separates a;, b;.

237rz

Next if b; = a; exp(%2t) we show that (Z; + R;(z))* " separates them. Now assume

that (Z + R;(z))F+ take the same value at a; and b;. We have
(ai + Ri(a))k”“ = (51 + Ri(b))k”“ .

We obtain o otmi
@ + Ri(a) = (@ exp(——) + Ri(0)) exp(-—
7 n+1

)
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for some 1 <r < k; —1and 1 <t < kyqy. It follows that

_ 2rmi 2tm 2t
@i (1 - exp(5) exp(—) ) = (—Rila) + Ri(b) exp(
ki kn+i

))-

n—+1

Dividing both sides by @; we obtain

knti

2rmi 2tm )>

(1 —exp(——)ex

—Ri (a) + RZ (b) exp( 2t )
k’L p( kn+i a.

a;.
By the coprimeness of k; and k,,4; we see that k:% + #ﬂ is not integer for all 1 < r < k; —1

and 1 <t < ko, SO (1 — exp( L) exp( 2L )) # 0. Using the fact that R(z) = o(]z|) we

i kni
arrive at a contradiction if we choose the polydisk D sufficiently small.

Next, suppose that polynomial map 7 : C?"* — C?" is defined by (21, ..., 22,) =
(281 ..., 2b2m). We put

X ={(z", .. 2 ZT + Ri(2) ., (Fn 4+ Ru(2)F) 1 2 = (21, ..., 2,) € D}.

Then we have 77 1(X) = UX; with

1seeesb2n

X; =

1a~-~)12n

= {(pi;llilzl? "'7p27;712nap;:;1;11_1(21 + Rl(z))7 7/)2;227;71(271 + Rn(z))) : (Zla "'7zn) € D}

Therefore by Theorem 1.1
P(Xihm,izn) = C(Xihm,izn)

for all 1 < iy < K1,y 1 < igy < K2y We show that P(r71(X)) = C(n~1(X)). To do this,
we consider the polynomial

D(Z1y ooy Zny Znb 1y oovy 22n) = Z1eveZn-Znt1e--22n.

We obtain
P(Xiy o ian) = {pillfl...pﬁ’;*l(\zlf +Z1R1(2))...(|2n]? + ZnRn(2)) ¢ (21, ..., 20) € D}.

We see that the sets p(X;,, . ,»n) are contained in an angular sector at 0, situated near the
half line through 0 with argument 271'(% + ...+ %) By the comprimeness of k;, k;
for all ¢ # j we obtain

7:1*1 ’L'Zn*]- jli]- jZn*]-

I + ...+ o % k:1 4+ .+ o

with i — 1 # js — 1 for some 1 < s < 2n. It follows that

p(Xilv-wiZn) mp(Xj17~“)j2n) = {O}



Polynomial approrimation on polydisks 15

and

p~H0) N (X; U Xy, on) = (X5 N Xji.....jon) = (0,...,0)

1yeeesb2n 1yeee5b2n,

for all 1 < 41,71, < k1,...,1 < iop, Jon, < kop With is #£ j, for some 1 < s < 2n.
Furthermore, it is easy to see that C\ p(X;,,... i,,) is connected set if D suffciently
small, so p(Xj, .. i,,) is polynomially convex [3]. Applying Stout’s theorem repeatedly, we
obtain
P(r1(X)) = C(r 1 (X)),

By proposition 2.2 we conclude that P(X) = C(X), or equivalently
(21", oy 2E%, (FT + R1)™ 4, ., (Zn + Ry)™; D] = C(D).
The theorem is proved.
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