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Concept lattice and adjacency matrix
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Abstract. In this paper, we introduce a new encoding for a given binary relation, by using

adjacency matrix constructed on the relation. Therefore, a coatom of a concept lattice can

be characterized by supports of row vectors of adjacency matrix. Moreover, we are able to

compute a poly-sized sub-relation resulting in a sublattice of the original lattice for a given

binary relation.

1. Introduction

Lattices have given rise to much interest for the past years, first as a powerful mathematical

structure (see e.g. Birkhoff’s work from 1967), then as useful in applications such as exploiting

questionnaires is Social Sciences (see e.g. Barbet and Monjardet’s work from 1970 [1]). Galois

lattices were later widely publicized and studied by the large body of work done by Wille and Granter

and the many researchers who worked with them, under the name of concept lattices in a much more

general context (see e.g. [2]).

Nowadays, concept lattices are well-studied as a classification tool (see [2]), are used in several

areas related to Artifical Intelligence and Data Mining, such as Data Base Management, Machine

Learning, and Frequent Set Generation (see e.g. [3-5]).

The main drawback of concept lattices is that they may be of exponential size. This makes it

impossible, in practice, to compute and span the entire structure they describe. It is thus of primeval

importance to be able to navigate the lattice efficiently, or to be able to define a polynomial sized

sub-lattice which contains the right information.

In this paper, we introduce a new encoding for a given binary relation, by using adjacency matrix

constructed on the relation. Therefore, a coatom of a concept lattice can be characterized by supports of

row vectors of adjacency matrix. Moreover, we are able to compute a poly-sized sub-relation resulting

in a sublattice of the original lattice for a given binary relation and we used the main results in this

paper to determine the concept lattices or a sublattice of given concept lattice which satisfies the above

problem.

The paper is organized as follows: Section 2 gives some preliminary notions on concept lattices.

In section 3, we give main results.
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2. Preliminaries

In this section, let us recall the notion of concept lattice as far as they are needed for this paper.

The definitions in this section are quoted from [5]. A more extensive overview is given in [3]. To

allow a mathematical description of extensions and intentions, concept lattice starts with a (formal)

context.

Definition 2.1. A formal context is a triple K := (G; M ; R) where G and M are sets and R ⊆ G×M

is a binary relation. The elements of G are called objects and the elements of M attributes. The
inclusion (g; m) ∈ R is read ”object g has attribute m”. For A ⊆ G, we define

A′ := {m ∈ M |∀g ∈ A : (g; m) ∈ R}

and for B ⊆ M , we define dually

B′ := {g ∈ G|∀m ∈ B : (g; m) ∈ R}.

We assume in this article that all sets are finite, especiallyG andM . A context K with |G| = k

and |M | = ℓ is called an k-by-ℓ context. The proofs of the following results are trivial therefore we

omit them.

Lemma 2.2. Let (G; M ; R) be a context, A1; A2 ⊆ G sets of objects, and B1; B2 ⊆ M sets of
attributes. Then the following holds:
(1) A1 ⊆ A2 ⇒ A′

2 ⊆ A′

1 and B1 ⊆ B2 ⇒ B′

2 ⊆ B′

1.
(2) A ⊆ A′′ and B ⊆ B′′.
(3) A′ = A′′′ and B′ = B′′′.
(4) A ⊂ B′ ⇔ B ⊆ A′ ⇔ A × B ⊆ R.
Definition 2.3. A formal concept is a pair (A; B) with A ⊆ G, B ⊆ M , A′ = B and B′ = A. (This
is equivalent to A ⊆ G and B ⊆ M being maximal with A × B ⊂ R.) A is called extent and B is
called intent of the concept. The set of all concepts of a formal context K together with the partial
order (A1; B1) ≤ (A2; B2) ⇔ A1 ⊂ A2 (which is equivalent to B2 ⊆ B1) is called concept lattice of
K and denote by L(R) = L(G; M ; R).

Such a lattice, sometimes refered to as a complete lattice, has a smallest element, called the

bottom element, and a greatest element, called the top element.

An element (A1; B1) is said to be a predecessor of element (A; B) if A1 ⊂ A. An element

(A1; B1) is said to be a ancestor of element (A; B) if A1 ⊂ A and there is no intermediate element

(A2; B2) such that A1 ⊂ A2 ⊂ A. The ancestors of the top element are called coatoms.

Let K := (G; M ; R) and K ′ := (G′; M ′; R′) be two contexts. We call K and K ′ isomorphic,

and write K ∼= K ′, if there exists two bijections ϕ : G → G′ and ρ : M → M ′ such that (g; m) ∈

R ⇔ (ϕ(g); ρ(m)) ∈ R′ for all g ∈ G and m ∈ M .

Theorem 2.4. [The basic theorem of Concept Lattice [5]] The concept lattice of any formal context
(G; M ; R) is a complete lattice. For an arbitrary set {(Ai; Bi)|i ∈ I} ⊆ L(G; M ; R) of formal
concepts, the supremum is given by

∨

i∈I

(Ai; Bi) = ((
⋃

i∈I

Ai)
′′,

⋂

i∈I

Bi)
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and the infimum is given by ∧

i∈I

(Ai; Bi) = (
⋂

i∈I

Ai, (
⋃

i∈I

Bi)
′′).

A complete lattice L is isomorphic to L(G; M ; R) iff there are mappings γ : G → L and µ : M → L

such that γ(G) is supremum-dense and µ(M) is infimum-dense in L, and

gRm ⇔ γ(g) ≤ µ(m).

In particular, L ∼= L(L; L;≤).
The theorem is less complicated as it first may seem (see [5]). We give some explanations

below. Readers in a hurry may skip these and continue with the next section.

The first part of the theorem gives the precise formulation for infimum and supremum of arbitrary

sets of formal concepts. The second part of the theorem gives (among other information) an answer

to the question if concept lattices have any special properties. The answer is ”no”: every complete

lattice is (isomorphic to) a concept lattice. This means that for every complete lattice we must be able

to find a set G of objects, a set M of attributes and a suitable relation R, such that the given lattice is

isomorphic to L(G; M ; R). The theorem does not only say how this can be done, it describes in fact

all possibilities to achieve this.

3. The main results

In the section we assume that K := (G; M ; R) is a context with G = {g1, . . . , gk} and
M = {m1, . . . , mℓ}. The adjacency matrix X = (aij)ℓ×k of a context K := (G; M ; R) is defined by

aij = 1 if (gj; mi) ∈ I and aij = 0 otherwise. We denote by XK the adjacency matrix of a context

K. Then we denote by vi the ith row vector of the adjacency matrix XK and by V (K) the set of row

vectors of the adjacency matrix XK . For a vector v = (x1, . . . , xk) of V (K), Supp(v) = {i | xi =

1} ⊆ [1, k] = {1, . . . , k} and conversion for a subset Z of [1, k], we denote by vZ the vector in V (K)

such that Z = Supp(vZ). For a subset A of G, we denote by A = {i | gi ∈ A} and conversion for a
subset Z of [1, k], we denote by AZ the subset of set G such that Z = AZ .

Examble 3.1. Let a binary relation between set G = {g1, g2, g3, g4, g5} and M = {m1, m2, m3, m4}

be the below table. Then the row vector v2 = (1, 1, 0, 0, 0) and Supp(v2) = {1, 2}. Let Z =

{2, 3, 4} ⊆ [1, 5] then AZ = {g2, g3, g4}.

g1 g2 g3 g4 g5

m1 0 1 1 0 0

m2 1 1 0 0 0

m3 1 0 1 1 1

m4 1 0 0 1 1

Now by Theorem 2.4, every vector of V (K) is attached to a unique concept. Let K :=

(G; M ; R) be some formal context. Then for each vector v of V (K) the corresponding a concept is

ϕ(v) := (A′′

Supp(v); A
′

Supp(v)).

Lemma 3.2. Let K := (G; M ; R) be a context. Then for all vectors v of V (K),

A′′

Supp(v) = ASupp(v).
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Proof. The inclusion ASupp(v) ⊆ A′′

Supp(v) is trivial. Assume that g ∈ A′′

Supp(v) such that g 6∈ ASupp(v).

Then since g ∈ A′′

Supp(v) and (A′′

Supp(v); A
′

Supp(v)) is a concept, we have {g} × A′

Supp(v) ⊆ R. Note

that the vector v corresponding with an element m of M and moreover m ∈ A′

Supp(v). Therefore

(g, m) ∈ R and so that g ∈ ASupp(v), a contradiction. Hence A′′

Supp(v) = ASupp(v) as required.

Let v = (x1, . . . , xk) and w = (y1, . . . .yk) be two vectors in R
k. Then we denote by v2 =

x2
1 + . . . + x2

k and vw = x1y1 + . . . + xkyk.

Proposition 3.3. Let X be a subset of coatom of a concept lattice L(R). Assume that a vector
vi satisfies the condition v2

i = max
j=1,...,k

{v2
j | Supp(vj) 6⊆ In(X) =

⋃
(A;B)∈X

A}. Then the concept

(A; B) corresponding with vi is a coatom of L(R). Proof. Assume that (A; B) is not a coatom.

Then there exists a concept (A1; B1) such that A ⊂ A1. Let mt ∈ B1. Since (A1; B1) is a concept,

we get that A1 × {mt} ⊆ R. Then A1 ⊂ ASupp(vt) and so that A = Supp(vi) ⊂ Supp(vt). Since

Supp(vi) 6⊆ In(X), we have Supp(vt) 6⊆ In(X). Hence, v2
i < v2

t and Supp(vt) 6⊆ In(X) in

contradiction by v2
i = max

j=1,...,k
{v2

j | Supp(vj) 6⊆ In(X)}. Thus (A; B) is a coatom of L(R).

Theorem 3.4. We use the above notation. Then the following two statements are equivalent.
(i) A concept (A; B) is a coatom of L(R).
(ii) Vector v = vA satisfies the condition Supp(v) 6⊆ Supp(vi) for all vectors vi such that

v2
i > v2.
Proof. (i)⇒ (ii) A concept (A; B) is a coatom. Let v = vA. Then A 6⊆ A1 for all A1 6= ∅ and A1 is

a extent of any concept. By Lemma , if a vector vi satisfies v2
i > v2, then Supp(vi) 6⊆ Supp(v).

(ii)⇒ (i) Let v be a vector such that Supp(v) 6⊆ Supp(vi) where a vectors vi satisfies v2 < v2
i .

Assume that a concept (A; B) where A = ASupp(v) is not a coatom. Then there exists a concept

(A1; B1) such that A ⊂ A1. Let mt ∈ B1. Since A1 × B1 is a concept, we have A1 × {mt} ⊆ R.

Therefore A1 ⊆ ASupp(vt). Then we obtain Supp(v) ⊂ Supp(vt), and so that v
2 < v2

t , a contradiction.

Hence (A; B) is a coatom.

Corollary 3.5. Let (A; B) be a coatom of lattice L(R). Then we have

v2
A

= max{v2 | Supp(v) 6⊆ Supp(vi) for all v2
i > v2

A
and v ∈ V (K)}.

Proof. Put C = {v | Supp(v) 6⊆ Supp(vi) for all v2
i > v2

A
; v ∈ V (K)}. Since (A; B) is a coatom

by Theorem , we obtain Supp(vA) 6⊆ Supp(vi) where a vector vi satisfies v2
i > v2

A
. Therefore

v2
A
≤ max

v∈B
v2. For all v ∈ C, v2 ≤ v2

A
, we have max

v∈B
v2 ≤ v2

A
. Hence v2

A
= max{v2 | Supp(v) 6⊆

Supp(vi) for all v2
i > v2

A
and v ∈ V (K)}, as required.

Note that a vector v ∈ V (K) corresponds with a concept which is coatom or without. Moreover,

two vectors vi and vj are different but they correspond with a same concept.

Corollary 3.6. Let v and w be two vectors in V (K) such that ASupp(v) and ASupp(w) are two extents
of any coatoms. Then the following two statements are equivalent.

(i) Vectors v and w correspond with a same coatom.
(ii) Supp(v) = Supp(w).
(iii) v2 = w2 = vw.

Proof. (i)⇔ (ii) and (ii)⇒ (iii) are trivial.

(iii)⇒ (i): Since entries of vectors v and w are 0 or 1 if Supp(v) 6⊆ Supp(w) then v2 > vw. Therefore

Supp(v) = Supp(w).
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Let V (R) = {v ∈ V (K) | v2 = max
i∈[1,k]

v2
i } and XR = {(ASupp(v); A

′

Supp(v))|v ∈ V (R)}.

Corollary 3.7. A set XR is a subset of coatoms of the lattice L(R).
Proof. Let (A; B) ∈ XR . Then a vector vA satisfies the condition v2

A
= max

i∈[1,k]
v2
i }, and thus there

dosen’t exists a vector w such that w2 > v2
A
. By Theorem , a concept (A; B) is a coatom as required.

Example 3.8. Let K = (G; M ; R) be as in Example . Then we have v4 = (1, 0, 0, 1, 1) and so

that ϕ(v4) = ({g1, g4, g5}; {m3, m4}) is a concept of lattice L(R) by Lemma . Moreover, we have

v2
1 = v2

2 = 2, v2
3 = 4 and v2

4 = 3. Then by Theorem , we get that ϕ(v4) is not a coatom of this

lattice since Supp(v4) ⊂ Supp(v3). On the other hand, ϕ(v2) = ({g1, g2}; {m2}) is a coatom because

Supp(v2) 6⊆ Supp(v3) and Supp(v2) 6⊆ Supp(v4).
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