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Abstract. In order to synthesize automat (in this case digital counters), the 
minimizing internal states is of particular significance and plays a decisive role 
in the results of synthetic circuit. This can be done in many ways, but the use of 
Karnaugh map is considered optimal. However, this process has some 
disadvantages that it can not be overcome when the number of input variants is 
large. In experience, if the number of variants is 7, manual minimization of 
circuit functions using Karnaugh map arises many difficulties and even become 
impossible if over 10 variants are available. 

In order to deal with this weakness, it is both necessary and rational to use 
computer in logical synthesis of counting circuit. This is the aim of this article. 

1. Synthesizing counting circuits using similar forms 

For the method of synthesizing digital counting circuits using computers is 
firstly primarily based on the results achieved through the Karnaugh map [1]. By 
there results drawning the general laws of circuit functions for each synchronous 
and asynchronous counters, for each Flip-Flop (FF) and for each kind of codes. 
These general laws help to develop mathematical models as well as computer 
programmes which enable the fastest definition of minimized circuit functions of 
each desired counters. 

Let us investigate, for example, the input states R2, S2 and outputs states Q2 

of RS – FF in synchronous counters, real binary, 4 inputs (k = 4). The input states 
R2, S2 as well as outputs states Q2 are given in table 1. 

Table 1. The input states R2, S2. ε is counting state, ε = 2k – 1 = 24- 1 = 15 = m -1, 
with m is a cardinal number Q2 is an output state corresponding inputs states S2 

and R2 

ε Q2   R2   S2 ε Q2  R2  S2 ε Q2  R2  S2 ε Q2  R2  S2 

0 

1 

2 

3 

 

0     d      0 

0     0      1 

1     0     d 

1     1     0 

 

4 

5 

6 

7 

 

0    d    0 

0    0    1 

1    0    d 

1    1    0 

 

8 

9 

10 

11 

 

0    d     0 

0    0     1 

1    0     d 

1    1     0 

 

12 

13 

14 

15 

0    d     0 

0    0     1 

1    0     d 

1    1     0 

From table 1, we can form impulse diagrams for both Q2, R2 and S2 (figure 1) 
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Figure 1: Impulse diagram of Q2, R2, and S2. The dots represent non-defined state 
‘don’t care’, which receive either value 1 or 0 when circuit function is reduced and 

which can be used or not be depending on certain cases 

In this case we particularly study the input state R2.  

If in minimizing circuit functions using Karnaugh map state ‘don’t care’ is 
given value 0, we can have an impulse diagram of R2 as in figure 2. 

 

Figure 2: Impulse diagram of Q2 and R2 to describe forms of circuit functions of R2 

From figure 2 we can see that if Q2 and R2 impulses are the same state, the 
responding circuit functions have the same form, here called form 1. If Q2 impulse 
flank positive but R2 impulse flank negative, then circuit functions have the same 
form 2. Figure 3 describes the appearance of form 1 and form 2 on ε axis. 

 

 Figure 3: Description of form 1 and form 2 on ε axis 
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From figure 3 we can see that if ε = 2, 6, 10, 14…, the corresponding impulse 
diagrams have the same for (form 1) and if ε = (3, 4, 5), (7, 8, 9)… the corresponding 
impulse diagrams have the same form (form 2). Therefore we say impulse diagrams 
corresponding ε in a definite period are similar. 

The concept of ‘similar’ is understood in the following way: Two similar circuit 
functions are two functions that have the same mathematical structure, such as the 
same “sum of products” or “product of sums”, or similar sum, similar product, but 
the connotations are different. 

This concept of ‘similar’ is the basis on which mathematical models for circuit 
functions of counters, in this case synchronous RS-FF counter, real binary code, are 
formed.  

Also from table 1, using Karnaugh map method, we can define circuit 
functions corresponding to inputs R2 (Table 2). 

Table 2: circuit functions corresponding to input R2 of RS - FF - Counter, k = 4,  
ε = 0 to 15 

ε  R2 ε  R2  ε  R2 ε  R2 

2 Q2 6 Q1Q2+ Q2Q3 10 Q1Q2+ Q2Q4 14 Q1Q2+Q2Q3Q4 

3 

4 

5 

Q1Q2 

Q1Q2 

Q1Q2 

7 

8 

9 

Q1Q2 

Q1Q2 

Q1Q2 

11 

12 

13 

Q1Q2 

Q1Q2 

Q1Q2 

15 Q1Q2 

 

From figure 2, figure 3, table 2 and the concept of “similar” we can see that 
circuit functions have two main forms: 

Form 1:  

 ε =
= = Π =(1)

1 2 l il,
i 1

R Q .Q ....Q Q A      { }∀ε∈ 2,6,10,14                    (1)  

Form 2:  

 ε
=

= + = +∏
t

(2)
il,

i 1

R A Q A B , { }∀ε∉ 2,6,10,14   (2) 

with   
t

i
i 1

B Q
=

=∏  (3) 

If we can prove that the existence of form 1 and 2 follows a certain law, for 
example form 1 and 2 exist at the same time in a repetitive period with 
denominator ∆ε = 2ℓ = 4 (in this case = 2): ε1 = {(3, 4, 5), (7, 8, 9), (11, 12, 13)…};  
ε2 = {2, 6, 10, 14…} and if we can define the circuit functions of form 1 (as well as 
form 2) with ε1 = (3, 4, 5) (as well as ε2 = 2), we can define all circuit functions of 
input R2 (as well as S2) with any ε counting state. 
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1.1 Prove the existence of circuit functions follows a certain law 

The problem is we have to prove with any unlimited great k variable input, 

that is with any unlimited great ε counting state, the impulse diagram always 

follows a certain law, that is always exist form 1 and 2 corresponding a repetitive 

period with ∆ε = 2ℓ (in the case of  counter RS=FF). 

Assuming that f(ε) = R(1)
1,ε is a function satisfying term Dirichlet of Fourier 

theorem on period [3, 4, 5] = [a,b]. In order to develop f(ε) into Fourier series, we 

form a periodic function g(ε) having a period either bigger or equal to (b – a) so that 

g(ε) = f(ε), ∀ε ∈ [a,b] 

Obviously there are many ways to develop g(ε) into Fourier series. For each 

g(ε) there is a corresponding Fourier series, therefore there are a number of Fourier 

series demonstrating f(ε) = R1,ε
(1). Similarly, f(ε) = R1,ε

(2) can also be developed into a 

Fourier series. To put it simple, the circuit function f(ε) = Rℓ,ε
(1) + Rℓ,ε

(2) with every ε 
is periodicall with period  ∆ε = 2ℓ (in this case ℓ = 2 → ∆ε = 4) (Figure 4). 

 

 Figure 4: Circuit function developed into Fourier series with ∆ε = 4 

Now that we can assert that with any variable input ℓ, that is the counter can 

(theoretically) count to infinite number, then the impulse diagram of circuit 

function change periodically in those periods which have similar impulses, that is 

circuit functions always have form 1 and 2 according to certain ∆ε. 

We particularly study the characters of this law for counters, firstly the 

circuit function in form 2. 

In order to identify and analyze the forming of form 2 of input state Rℓ,ε,  we 

investigate the circuit function of for example R3 in RS - FF - Counter with k = 6 

(table 3). 
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Table 3. Circuit function with input state R3,ε of RS - FF - Counter with k = 6, ε = 0 
to 64, in which: P is the periodical existence of circuit function form 2; F is the 
frequency of existence of circuit function in each period P, with corresponding 
denominator ∆ε = 2ℓ 

P F ε  Circuit function in form 2 of R3 3ε  

 
0 

0 

1 

2 

4 

5 

6 

Q3  

Q1 Q3   

Q2 Q3 

22  + 0.23  + 0 

22  + 0.23  + 1 

22  + 0.23  + 2 

1 0 

1 

2 

12 

13 

14 

Q1 Q2 Q3 +  Q3Q4  

Q1 Q2 Q3 +  Q1Q3Q4 

Q1 Q2 Q3 +  Q2Q3Q4 

22  + 1.23   + 0 

22  + 1.23   + 1 

22  + 1.23   + 2 

2 0 

1 

2 

20 

21 

22 

Q1 Q2 Q3 +  Q3Q5  

Q1 Q2 Q3 +  Q1Q3Q5 

Q1 Q2 Q3 +  Q2Q3Q5 

22  + 2.23  + 0 

22  + 2.23  + 1 

22  + 2.23  + 2 

3 0 

1 

2 

28 

29 

30 

Q1 Q2 Q3 +  Q3 Q4Q5  

Q1 Q2 Q3 +  Q1Q3 Q4Q5 

Q1 Q2 Q3 +  Q2Q3 Q4Q5 

22  + 3.23   + 0 

22  + 3.23   + 1 

22 + 3.23   +  2 

4 0 

1 

2 

36 

37 

38 

Q1 Q2 Q3 +  Q3Q6  

Q1 Q2 Q3 +  Q1Q3Q6 

Q1 Q2 Q3 +  Q2Q3Q6 

22  + 4.23  + 0 
22  + 4.23  + 1 

22  + 4.23  + 2 

5 0 

1 

2 

44 

45 

46 

Q1 Q2 Q3 +  Q3 Q4Q6  

Q1 Q2 Q3 +  Q1Q3 Q4Q6 

Q1 Q2 Q3 +  Q2Q3 Q4Q6 

22  + 5.23   + 0 

22  + 5.23   + 1 

22  + 5.23   + 2 

. 

. 

. 

  . 

. 

. 

 

 

From table 3 we can form the relation between P, F and ε for two forms of 
circuit functions. (Figure 5) 

 
with ∆ε = 2ℓ = 23 = 8 
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Similarly, with R4: 

  
with ∆ε = 2ℓ = 24 = 16 

Figure 5: Description of the relation between P, F of circuit function R3 and R4 on ε      axis 

Circuit functions of form 1 and 2 depend on ε, ℓ (ℓ ∈ k). This dependence is 
demonstrated by the periodical existence of P and frequency of existence in each 
period F (See table 3 and Figure 4) 

From table 3 and figure 5 we can identify the relation between ℓ, ε, P and F, 
that is the relation as well as the mathematical models showing the existence law of 
circuit functions: 

 εℓ = 2ℓ-1 + P.2ℓ + F  (4) 

From (4) we have:  

 
l-1

l
l l

ε 2 +F=P+
2 2

    (5) 

Put 

 I = l-1I=2 +F   (6) 

Apply to (6) we have 

 l

ε-IP=
2

 (7)  

From (5), (6), and (7) we see that parameter I can show the complete 
frequency and periodical existence of circuit function. 

Call E set of I from I0 to Imax, we have: 

 E = {I0, I1, I2, …, Imax}  (8) 

 E = {F0 + 2ℓ-1, F1 + 2ℓ-1, …, Fmax + 2ℓ-1}  (9) 

or  E = { 2ℓ-1, 1 + 2ℓ-1, 2 + 2ℓ-1 …, 2ℓ - 2}  (10) 

with Fmax = 2ℓ - 2 
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Obviously now the value of set E shows the complete parameters of periodical 
as well as frequency existence of forms of circuit functions (from F0 to Fmax), in other 
words, in order to identify P and F we only have to identify the value of set E. 
Figure 6 shows the existence of circuit function with E corresponding R3 (ℓ = 3). 

 

 Figure 6: Describes the existence of period P and frequency F through set E 

If we look into figure 6, we can see that for each R3, if E ∈ {4,5,6} the circuit 
function will have form 2 and E ∉ {4,5,6} form 1. 

1.2 Identifying circuit function 

Another problem is that we have to identify the circuit functions of input ℓ for 
any counting state ε, in other words, we have to identify to relation between input 
state Rℓ and output state Qℓ through counting state ε. 

Identify circuit function form 1: 

With 
=

= Π i
i 1

A Q  , we can obviously identify circuit function for any ℓ ∈ k. for 

example the third input of RS-FF - counter, that is ℓ = 3, has circuit equation as 
following: 

 R3, ε =
3

i
i=1

Q∏  = Q1 . Q2 . Q3                 ε satisfies E ∉{4,5,6} 

with any ℓ we have:                                                    

 
l

l,ε i 1 2 l
i=1

R = Q =Q .Q ...Q∏       ε satisfies E ∉{2ℓ-1, 1 + 2ℓ-1, 2 + 2ℓ-1 …, 2ℓ - 2} 

* Identifying circuit function form 2: 

The problem is to identify circuit functions 
k

i
i=1

B= Q∏   
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Through investigating circuit functions forms B for input R (as well as S) of 
counter RS – FF we have an interesting remark: for each different ε counting state 
there is very different circuit function, apparently not following any law (see table 
3) but if we look at the relation between binary number and decimal number we will 
see that the binary number showing the total weight ηB of Qℓ equals to the decimal 
number showing counting state ε, that is, ηB = ε. 

Assuming that the counter has k inputs, then the corresponding weight to 
each input will be: 

Qk ...... Q  ...... Q5 Q4 Q3 Q2 Q1 

ηk ...... η  ...... η5 η4 η3 η2 η1 

2k-1 ...... 12 −  ...... 24 23 22 21 20 

 

Now the total weight of Q1 to Qk is 

 ηB = bk+1 . 2k + bk . 2k-1 + ….. + b22 + b0
1 = 

k
i-1

i
i=1

b .2∑    (11)  

And from the conclusion ε = 19, k = 5 we have 

ηB = 19 = b6 . 25 + b5 . 24 + b4 . 23 + b3 . 22 + b2 . 21 + b1 . 20 

      = b6 . 32 + b5 . 16 + b4 . 8 + b3 . 4 + b2 . 2 + b1 . 1 

      = 0.32 + 1.16 + 0.8 + 0.4 + 1.2 + 1.1 

That factors b6, b4, b3 must equal to 0 and b5 = b2 = b1 = 1 when ηB = 19 

In other words, when k = 5 with ε = 19 the circuit function B will have Qℓ = 

(Q4, Q1. Q0), that is, 
5

19,5 i 0 1 4
i=1

B = Q =Q .Q .Q∏   

Now we can form a formula to find B: 

 ( )= Π +
=
k

B Q bi ii 1
, with 





=
=

=

1 b 0ibi 0 b 1i
     (12) 

From this we can form the formula to identify the circuit function for each 
corresponding Rl,ε of RS - FF - Counter 

      
t

R . Q .Q (Q b ).i i iB, A i 1 i 1
=∆ +∆ + ∆∏ ∏

= =ε   (13) 

In which: 

 




ε ≥ −∆ = 1 2 1
A 0 other cases

 

∆A shows the condition for the existence of form A 
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{ }


    





− − −= + ∈ = + −

− −∆ = η = ε − = = η +∑
=

l 1 l 1 l 1 l1 I F 2 E 2 , 1 2 ,..., 2 2

t1 i 12 b .2 t ld 1B B Bi
i 1

0 other cases

 ∆B shows the condition for the existence of form B 

   




=
∆ =

1 1

0 other cases
  

∆  shows the condition for the existence of input 1=  

The identification of Sl,ε is done similarly. 

2. Conclusion 

From the above results we can form a mathematical model for RS - FF - 
Counter and through their relation [1] (figure 7) we can identify the circuit fuction, 
that is the mathematical model for all counters namely JK-FF, T-FF, D-FF… 

 

&

&

S
C
R

T Q
&

&

S
C
R

Q
J

K

S
C
R

Q

T - FF JK - FF D - FF

D

S = TQ
R = TQ

S = JQ
R = KQ

S = D
R = D  

   Figure 7:   The relation between RS-FF with T-, JK-, D-FF 

For example define the circuit function of  D – FF. From figure 7 we can see 
that circuit function of D – FF is: 

 D = S     

 or D = R  

That is: 
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t

, i, A i B i
i 1 i 1

D R . Q .Q (Q b ).
= =

= = ∆ + ∆ + ∇∏ ∏εη                     (14) 

With these mathematical models and with software such as Pascal, C++..., and 
especially Mathlab we can easily designsynchronous or asynchronous counters, for 
all codes, with any cardinal numbers using computers. 
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