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GENERALIED MASON’S THEOREM
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AsTrACT. The purpose of this paper is to give a generalization of Mason’s theorem
by the Wronskian technique over fields of characteristic 0.
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1. Introduction

Let F be a fixed algebraically closed field of characteristic 0. Let f(z) be a poly-
nomial non - constants which coefficients in F' and let (1/f) be the number of distinct
zeros of f. Then we have the following.

Marson’s theorem. ([2]). Let a(z),b(z),c(z) be relatively prime polynomials in F and
not all constants such that a + b = c. Then

1

max {deg(a), deg(b),deg(c)} <7 (%) -1

It is now well known that Mason’s Theorem implies the following corollary.

Corollary. (Fermat’s Theorem over polynomials). The equation z™ + y™ = 2™ has no
solutions in non - constants and relatively prime polynomials in F' if n < 3.

The main theorem in this paper is as following;:

Theorem 1.1. Les fy, fi1,..., fn be relatively primer polynomials and fy, f1, ..., fn be lin-
early independent over F. If

fot fit+ o+ fn= for,

then

n+1
1 n(n+1)
deg f; < n(— -
0<iSn i1 egfisn (Zon<fl)> 2
Remark. Theorem 1.1 is a generalization of Mason’s theorem which was obtained for
case n = 1.
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2. Proof of the main theorem

Let ¢(z) = % # 0 be a rational function, where f(x),g(x) are non - zero and

relatively prime polynomials on F. The degree of ¢(z), denoted by deg ¢(x), is defined to
be deg f(z) — deg g(x). Here the notation deg f(z) means the degree of polynomial f(x).
From the properties of polynomial, we have.

Proposition 2.1. If ¢; and @2 are the rational functions on F, then
1) deg(p1p2) = degpy + deg s

1
2) deg (—) = —deg s
Y1
3) deg(p1 + p2) < max(deg p1,deg p2).

Definition 2.2. Let ¢(x) # 0 be a rational function on F. For every a € F, we write

= x—amfl(m) m
o) = (z =" (m e 2),

where f1(x), fa(z) are relatively prime polynomials and fi(«) # 0, g1(a) # 0. We call m

order of ¢ at a.

Proposition 2.3. If ¢, s are rational functions on F' and a € F, then

1) ord,(p1p2) = ordapr + ordaps
2) orda(%) = —ord,p1
3) orda(f;—;) = ordap1 — ordyps.

Proposition 2.4. Let ¢(z) be a the rational function on F' and let the derivatives order

k, o(®) 0. Then o
ord,, (L> > —k.
¥

Proof. Let p(z) = (z — a)™ i;gg, where f(x),g(z) are relatively prime and f(a)g(a) # 0.

Then, we have

!

o (z) = (x — a)™! (mf(x) + (z — a)fg(;&){n))—l— (z —a)f(z)g (CL’)

Therefore
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Thus, we obtain

(k) / 1" (k)
ord, LA = ord, ggo_/go_
© o @ Pl

B 80/ SOH So(k)
= ord, (Z) + ord,, (?) +...+ord, (m > —k (1)

Proposition 2.5. Let 1,2 be rational functions on F' and a € F. Then

orda(p1,p2) = min{ordap1,ordapa} .

Proof. Let ord,p1 = my and ord,ps = ma. Then

fi(z)

g1 (CC),
m J2(z)
92(33),

(2)

p1(z) = (z — )™

pa(z) = (z — ) (3)

where f1, f2, 91,92 are the polynomials over F' and fi(«), fa(a), g1(a), g2(c) # 0. We set
m = min(mi, ms). Then

" (@ — )™ " fi(@)ga(2) + (2 — @)™ fo(@)gs ()|

p1(z) + p2(z) = (z — a f2(2)g2(z)

Since fa(a)g2(a) # 0, we have

ordy(p1 + p2) = m = min(ordyp1, ordyps).

Definition 2.6. Let fi, fa,....., f, be polynomials on F' (but to a large extent what we
do depends only on formal properties of devivations). We recall that their Wronskian is

f1 fo fn

! 7 il

W(flaf?a"'afn): :1 :2 . :
fl(n'—1) f2(n'—1) N fén'_n

Remark. If fi, fo, ....., f, are linearly independent on F, then W (f1, fa, ..., fn) # 0.

Proof of Theorem 1.1. Let {ag, ai,...,an} be a subset of I = {0,1,...,n + 1}. Then the

equation fo + f1 + ... + frn, = fny1 implies W (fag,-o... s fo,) = W (fo, f1,--, fn), where
0 =1 or —1. Because fy, f1,..f, are linearly independent, we obtain

W(f07 fla ey fn) 7& 0.
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Then, we set

P(t) _ W(fO?fl?"'?fn)

fOfl----fn ’
_ Jofiefnt1
Q(t) B W(vaflv"'afn)'

Hence, we have

frt1 = P()Q(2).

degQ(t) < n (Tilﬁ (fi)) .

=0

We first prove that

Let a be a zero of the function Q(z). Then « is a zero of some polynomial f;(0 < i <
n+1). By the hypothesis that the polynomials are relatively prime, there exists a number
v(0 < v < n+1) such that f,(a) # 0.

Let {ig,%1,...,in} be a subset I|{v}, then we have

Q(t) -5 flofhf’tn fy-
W(f07f17"'7fn)
Denote
R(t) _ W(fioafha 7f'ln)
fiofiy--fi,
as the logarithmic Wronskian corresponding to {ig, i1, ...., in }, which is
A
fig fo 0 L.
fio fil fln
(n:— n:— n:—
fig fiq fin

Then f, = R(t)Q(t) and so ord, R(t) = —ord,Q(t). Then the determinant R(t) is

a sum of following terms

! (n—1)
slaotar A

faofar-fon

where 0 < ag, a1, ...,a, <n+1land § =1 or —1.

By applying the propositions 2.3 and 2.4, we get

Y (n—1) / " (n—1)
ordy, | 2o 2% ) — ord, [ 222 ) + ord, ( al) + ... +ord, | ==
< faofal"'fan > (fa()) fal ( fOén >
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Therefore from Proposition 2.5, we have

ord,R(t) < —n E 1
0<i<nt1
fi(a)=0

and so

ord,Q(t) = —ord,R(t) < —n Z 1
0<i<n+1
fi(a)=0

Since this inequality holds for any zero a of Q(t), we get

deg Q(t) < n (nzﬂn (%)) .

=0

Next, we will prove that
1
deg P(t) < —@.
Here, we have P(t) as the logarithmic Wronskian corresponding to I = {0, 1,..,n} which

1S

1 1
fo fi fn
fo fi fn

The determinant P(t) is a sum of following terms

Y (n—1)
(Tnfh Y
fﬂofﬁl“'fﬂn

For every term, by Proposition 2.4 we have

f,éofulmf(”*l) (f,é ) (f// ) f,((in)
deg | "t 2rBn ) = deg (%2 ) d L) e deg | 2
eg( foofp1-+- . “\a ) T, e /3.

Therefore
1

SO

n+1
i=0 2
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By the similar arguments applying to the polynomial fg, f1,...., fn, we have
n+1
1 n(n+1)
N < 7 — I S
0<B2%,  (degfi) < <; " (ﬁ)) 2

Theorem 1.1 is proved.
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