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Abstract. The purpose of this paper is to give a generalization of Mason’s theorem
by the Wronskian technique over fields of characteristic 0.
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1. Introduction

Let F be a fixed algebraically closed field of characteristic 0. Let f(z) be a poly-

nomial non - constants which coefficients in F and let n(1/f) be the number of distinct

zeros of f . Then we have the following.

Marson’s theorem. ([2]). Let a(z), b(z), c(z) be relatively prime polynomials in F and

not all constants such that a+ b = c. Then

max {deg(a),deg(b),deg(c)} n

w
1

abc

W
− 1.

It is now well known that Mason’s Theorem implies the following corollary.

Corollary. (Fermat’s Theorem over polynomials). The equation xn + yn = zn has no

solutions in non - constants and relatively prime polynomials in F if n 3.

The main theorem in this paper is as following:

Theorem 1.1. Les f0, f1, ..., fn be relatively primer polynomials and f0, f1, ..., fn be lin-

early independent over F. If

f0 + f1 + ...+ fn = fn+1,

then

max
0 i n+1

deg fi n

X
n+1333
i=0

n

w
1

fi

W~
− n(n+ 1)

2
.

Remark. Theorem 1.1 is a generalization of Mason’s theorem which was obtained for

case n = 1.
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2. Proof of the main theorem

Let ϕ(x) = f(x)
g(x) W≡ 0 be a rational function, where f(x), g(x) are non - zero and

relatively prime polynomials on F . The degree of ϕ(x), denoted by degϕ(x), is defined to

be deg f(x)− deg g(x). Here the notation deg f(x) means the degree of polynomial f(x).
From the properties of polynomial, we have.

Proposition 2.1. If ϕ1 and ϕ2 are the rational functions on F, then

1) deg(ϕ1ϕ2) = degϕ1 + degϕ2

2) deg

w
1

ϕ1

W
= −degϕ2

3) deg(ϕ1 + ϕ2) max(degϕ1,degϕ2).

Definition 2.2. Let ϕ(x) W≡ 0 be a rational function on F . For every a ∈ F, we write

ϕ(x) = (x− α)m f1(x)
g1(x)

, (m ∈ Z),

where f1(x), f2(x) are relatively prime polynomials and f1(α) W= 0, g1(α) W= 0. We call m
order of ϕ at α.

Proposition 2.3. If ϕ1,ϕ2 are rational functions on F and a ∈ F, then
1) ordα(ϕ1ϕ2) = ordαϕ1 + ordαϕ2

2) ordα(
1
ϕ1
) = −ordαϕ1

3) ordα(
ϕ1
ϕ2
) = ordαϕ1 − ordαϕ2.

Proposition 2.4. Let ϕ(x) be a the rational function on F and let the derivatives order

k, ϕ(k) W≡ 0. Then
ordα

w
ϕ(k)

ϕ

W
−k.

Proof. Let ϕ(x) = (x− α)m f(x)
g(x) , where f(x), g(x) are relatively prime and f(α)g(α) W= 0.

Then, we have

ϕ
I
(x) = (x− α)m−1 (mf(x) + (x− α)f

I
(x)) + (x− α)f(x)gI(x)
g2(x)

.

Since ordα(g(x)) = 0, we have

ordα(ϕ
I
(x)) m− 1.

Therefore

ordα

w
ϕI

ϕ

W
= ordα(ϕ

I
)− ordα(ϕ) −1.
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Thus, we obtain

ordα

w
ϕ(k)

ϕ

W
= ordα

w
ϕI

ϕ
.
ϕII

ϕI
. . .

ϕ(k)

ϕ(k−1)

W
= ordα

w
ϕI

ϕ

W
+ ordα

w
ϕII

ϕI

W
+ . . .+ ordα

w
ϕ(k)

ϕ(k−1)

W
−k (1)

Proposition 2.5. Let ϕ1,ϕ2 be rational functions on F and a ∈ F. Then

ordα(ϕ1,ϕ2) min{ordαϕ1, ordαϕ2} .

Proof. Let ordαϕ1 = m1 and ordαϕ2 = m2. Then

ϕ1(x) = (x− α)m f1(x)
g1(x),

(2)

ϕ2(x) = (x− α)m f2(x)
g2(x),

(3)

where f1, f2, g1, g2 are the polynomials over F and f1(α), f2(α), g1(α), g2(α) W= 0. We set
m = min(m1,m2). Then

ϕ1(x) + ϕ2(x) = (x− α)m
�
(x− α)m1−mf1(x)g2(x) + (x− α)m2−mf2(x)g1(x)

=
f2(x)g2(x)

.

Since f2(α)g2(α) W= 0, we have

ordα(ϕ1 + ϕ2) m = min(ordαϕ1, ordαϕ2).

Definition 2.6. Let f1, f2, ....., fn be polynomials on F (but to a large extent what we

do depends only on formal properties of devivations). We recall that their Wronskian is

W (f1, f2, ..., fn) =

eeeeeeee
f1 f2 · · · fn
f I1 f I2 · · · f In
...

...
. . .

...
f
(n−1)
1 f

(n−1)
2 · · · f

(n−1)
n

eeeeeeee
Remark. If f1, f2, ....., fn are linearly independent on F, then W (f1, f2, ..., fn) W= 0.

Proof of Theorem 1.1. Let {α0,α1, ...,αn} be a subset of I = {0, 1, ..., n + 1}. Then the
equation f0 + f1 + ... + fn = fn+1 implies W (fα0 , ......, fαn) = δW (f0, f1, ..., fn), where

δ = 1 or −1. Because f0, f1, ..fn are linearly independent, we obtain

W (f0, f1, ..., fn) W= 0.
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Then, we set

P (t) =
W (f0, f1, ..., fn)

f0f1....fn
,

Q(t) =
f0f1....fn+1

W (f0, f1, ..., fn)
.

Hence, we have

fn+1 = P (t)Q(t).

We first prove that

degQ(t) n

X
n+1333
i=0

n

w
1

fi

W~
.

Let α be a zero of the function Q(z). Then α is a zero of some polynomial fi(0 i

n+1). By the hypothesis that the polynomials are relatively prime, there exists a number

v(0 v n+ 1) such that fv(α) W= 0.
Let {i0, i1, ..., in} be a subset I|{v}, then we have

Q(t) = δ
fi0fi1 ....fin

W (f0, f1, ..., fn)
fv.

Denote

R(t) =
W (fi0 , fi1 , ...., fin)

fi0fi1 ...fin

as the logarithmic Wronskian corresponding to {i0, i1, ...., in}, which iseeeeeeeeee

1 1 · · · 1
f Ii0
fi0

f Ii1
fi1

· · · f Iin
fin

...
...

. . .
...

f
(n−1)
i0

fi0

f
(n−1)
i1

fi1
· · · f

(n−1)
in

fin

eeeeeeeeee
Then fv = R(t)Q(t) and so ordαR(t) = −ordαQ(t). Then the determinant R(t) is

a sum of following terms

δ
f Iα0f

II
α1 ....f

(n−1)
αn

fα0fα1 ...fαn
,

where 0 α0,α1, ...,αn n+ 1 and δ = 1 or −1.
By applying the propositions 2.3 and 2.4, we get

ordα

X
f Iα0f

II
α1 ...f

(n−1)
αn

fα0fα1 ...fαn

~
= ordα

w
f Iα0
fα0

W
+ ordα

w
f IIα1
fα1

W
+ ...+ ordα

X
f
(n−1)
αn

fαn

~

−n

 3
0 i n+1
fi(a)=0

1

 . (4)
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Therefore from Proposition 2.5, we have

ordαR(t) −n

 3
0 i n+1
fi(a)=0

1


and so

ordαQ(t) = −ordαR(t) −n

 3
0 i n+1
fi(a)=0

1

 .
Since this inequality holds for any zero α of Q(t), we get

degQ(t) n

X
n+1333
i=0

n

w
1

fi

W~
.

Next, we will prove that

degP (t) −n(n+ 1)
2

.

Here, we have P (t) as the logarithmic Wronskian corresponding to I = {0, 1, .., n} which
is eeeeeeeee

1 1 · · · 1
f I0
f0

f I1
f1

· · · f In
fn

...
...

. . .
...

f
(n)
0

f0

f
(n)
1

f1
· · · f(n)n

fn

eeeeeeeee
The determinant P (t) is a sum of following terms

δ
f Iβ0f

II
β1
....f

(n−1)
βn

fβ0fβ1 ...fβn
.

For every term, by Proposition 2.4 we have

deg

X
f Iβ0f

II
β1
...f

(n−1)
βn

fβ0fβ1 ...fβn

~
= deg

w
f Iβ0
fβ0

W
deg

w
f IIβ1
fβ1

W
+ ...+ deg

X
f
(n)
βn

fβn

~

= −(1 + 2 + ...+ n) = −n(n+ 1)
2

. (5)

Therefore

degP (t) −n(n+ 1)
2

so

deg fn+1 = degP (t) + degQ(t) n

X
n+1333
i=0

n

w
1

fi

W~
− n(n+ 1)

2
.
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By the similar arguments applying to the polynomial f0, f1, ...., fn, we have

max
0 ⊂ n+1

(degfi) n

X
n+1333
i=0

n

w
1

fi

W~
− n(n+ 1)

2
.

Theorem 1.1 is proved.
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