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Abstract. The aim of this paper is to show that the preservation of irreducibility of
sections between a variety and hypersurface by specializations and almost all sections
between a linear subspace of dimension h = n− d of Pnk and a nondegenerate variety
of dimension d > 0 consists of s points in uniform position.

Introduction

The lemma of Haaris [2] about a set in the uniform position has attracted much

attention in algebraic geometry. That is a set of points of a projective space such that

any two subsets of them with the same cardinality have the same Hilbert function. For

wider applicability of the result, in this paper we will now apply this lemma to prove

that almost all n − d-dimensional linear subspace sections of a d-dimensional irreducible
nondegenerate variety in Pn are the finite sets of points in uniform position under certain

conditions. Here we use a notion ground-form which was given by E. Noether, see [3] or

[6], and specializations of ideals and of modules [3], [4], [5], [6], [7], that is a technique to

prove the existence of algebraic structures over a field with prescribed properties.

Let k be an infinite field of arbitrary characteristic. Let u = (u1, . . . , um) be a

family of indeterminates and α = (α1, . . . ,αm) a family of elements of k. We denote the

polynomial rings in n variables x1, . . . , xn over k(u) and k(α) by R = k(u)[x] and by

Rα = k(α)[x], respectively. The theory of specialization of ideals was introduced by W.

Krull [3]. Let I be an ideal of R. A specialization of I with respect to the substitution

u → α was defined as the ideal Iα = {f(α, x)| f(u, x) ∈ I ∩ k[u, x]}. For almost all
the substitutions u → α, that is for all α lying outside a proper algebraic subvariety of

km, specializations preserve basic properties and operations on ideals, and the ideal Iα
inherits most of the basic properties of I. Specializations of finitely generated modules

Mu over Ru = k(u)[x], one can substitute u by a finite set α of elements of k to obtain

the modules Mα over R = k[x] with a same properties [4], and specializations of finitely

generated graded modules over the graded ring Ru = k(u)[x] are also graded [5]. The

interested reader is referred to [5] for more details. Using the notion of Ground-form

of an unmixed ideal and results in the specializations of graded modules we will prove

Typeset by AMS-TEX

25



26 Pham Thi Hong Loan, Dam Van Nhi

preservation of irreducibility of hypersurface sections and apply a lemma of Harris to give

some properties about set of points on a variety.

In this paper we shall say that a property holds for almost all α if it holds for all

points of a Zariski-open non-empty subset of km. For convenience we shall often omit the

phrase ”for almost all α” in the proofs of the results of this paper.

1. Some results about specializations of graded modules

We shall begin with recalling the specializations of finitely generated graded mod-

ules.

Let k be an infinite field of arbitrary characteristic. Let u = (u1, . . . , um) be a

family of indeterminates and α = (α1, . . . ,αm) a family of elements of k. To simplify

notations, we shall denote the polynomial rings in n + 1 variables x0, . . . , xn over k(u)

and k(α) by R = k(u)[x] and by Rα = k(α)[x], respectively. The maximal graded ideals

of R and Rα will be denoted by m and mα. It is well-known that each element a(u, x) of

R can be written in the form

a(u, x) =
p(u, x)

q(u)

with p(u, x) ∈ k[u, x] and q(u) ∈ k[u] \ {0}. For any α such that q(α) W= 0 we define

a(α, x) =
p(α, x)

q(α)
.

Let I is an ideal of R. Following [3], [7] we define the specialization of I with respect

to the substitution u→ α as the ideal Iα of Rα generated by elements of the set

{f(α, x)| f(u, x) ∈ I ∩ k[u, x]}.

For almost all the substitutions u → α, specializations preserve basic properties and

operations on ideals, and the ideal Iα inherits most of the basic properties of I, see [3].

The specialization of a free R-module F of finite rank is a free Rα-module Fα of the

same rank as F. Let φ : F −→ G be a homomorphism of free R-modules. We can represent

φ by a matrix A = (aij(u, x)) with respect to fixed bases of F and G. Set Aα = (aij(α, x)).

Then Aα is well-defined for almost all α. The specialization φα : Fα −→ Gα of φ is given

by the matrix Aα provided that Aα is well-defined. We note that the definition of φα
depends on the chosen bases of Fα and Gα.

Definition. [4] Let L be a finitely generated R-module. Let F1
φ−→ F0 −→ L −→ 0 be

a finite free presentation of L. Let φα : (F1)α −→ (F0)α be a specialization of φ. We call

Lα := Cokerφα a specialization of L (with respect to φ).

It is well known [4, Proposition 2.2] that Lα is uniquely determined up to isomorphisms.
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Lemma 1.1. [4, Theorem 3.4] Let L be a finitely generated R-module. Then there is

dimLα = dimL for almost all α.

Let R be naturally graded. For a finitely generated graded R-module L, we denote

by Lt the homogeneous component of L of degree t. For an integer h we let L(h) be the

same module as L with grading shifted by h, that is, we set L(h)t = Lh+t.

Let F =
s
j=1R(−hj) be a free graded R-module. We make the specialization Fα

of F a free graded Rα-module by setting Fα =
s
j=1Rα(−hj). Let φ : s1

j=1R(−h1j) −→
s0
j=1R(−h0j) be a graded homomorphism of degree 0 given by a homogeneous matrix

A = (aij(u, x)), where all aij(u, x) are the forms with

deg aij(u, x) + deg ahl(u, x) = deg ail(u, x) + deg ahj(u, x) for all i, j, h, l.

Since

deg(ai1(u, x)) + h01 = · · · = deg(ais0(u, x)) + h0s0 = h1i,
the matrix Aα = (aij(α, x)) is again a homogeneous matrix with

deg(ai1(α, x)) + h01 = · · · = deg(ais0(α, x)) + h0s0 = h1i.
Therefore, the homomorphism φα :

s1
j=1Rα(−h1j) −→ s0

j=1Rα(−h0j) given by the
matrix Aα is a graded homomorphism of degree 0.

Let L be a finitely generated graded R-module. Suppose that

F• : 0 −→ Ff
φf−→ Ff−1 −→ · · · −→ F1

φ1−→ F0 −→ L −→ 0

is a minimal graded free resolution of L, where each free module Fi may be written in the

form j R(−j)βij , and all graded homomorphisms have degree 0. The following lemmas
are well known and are needed afterwards.

Lemma 1.2. [5] Let F• be a minimal graded free resolution of L. Then the complex

(F•)α : 0 −→ (Ff)α
(φf)α−→ (Ff−1)α −→ · · · −→ (F1)α

(φ1)α−→ (F0)α −→ Lα −→ 0

is a minimal graded free resolution of Lα with the same graded Betti numbers for almost

all α.

Lemma 1.3. [5] Let L be a finitely generated graded R-module. Then Lα is a graded

Rα-module and dimk(α)(Lα)t = dimk(u) Lt, t ∈ Z, for almost all α.

2. Irreducibility, Singularity of a hypersurface section

In this section we are interested in the intersection of a variety with a generic

hypersurface. We will now begin by recalling the definition of Hilbert function.

Given any homogeneous ideal I of the standard grading polynomial ring k[x] =

k[x0, . . . , xn] with deg xi = 1. We now set R = k[x]/I = t 0Rt. The Hilbert function

of I, which is denoted by h(−; I), is defined as follows h(t; I) = dimkRt for all t 0. We

make a number of simple observations, which are needed afterwards.
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Lemma 2.1. The Hilbert function is unchanged by projective inverse transformation. If

k∗ is an extension field of k, then h(t; I) = h(t; Ik∗[x]) for all t 0.

Lemma 2.2. For two homogenous ideals I, J and a linear form f of k[x] with I : f = I

we have

(i) h(t; (I, J)) = h(t; I) + h(t;J)− h(t; I ∩ J),
(ii) h(t; (I, f)) = h(t; I)− h(t− 1; I).
Proof. The equality (i) is obtained from the following exact sequence

0→ k[x]/I ∩ J → k[x]/I k[x]/J → k[x]/(I, J)→ 0,

where for a, b ∈ k[x] the maps are a→ (a, a) and (a, b)→ a−b. The equality (ii) is induced
by (i).

For a set X = {qi = (ηi0, . . . , ηin) | i = 1, . . . , s} of s distinct K-rational points in PnK ,
where K is an extension of k, we denote by I = I(X) the homogeneous ideal of forms of

k[x] that vanish at all points of X. Let k[x]/I be the homogeneous coordinate ring of X.

The Hilbert function hX of X is defined as follows

hX(t) = h(t; I), ∀t 0.

Before recalling the notion of groundform of an ideal we want to prove the Noether-

ian normalization of a homogeneous polynomial.

Lemma 2.3. Assume that t(x) ∈ k[x] is a homogeneous polynomial of degree s. There is
a linear transformation and a ∈ k such that at(x) has the form

at(x) = xsn + a1(x)x
s−1
n + · · ·+ as(x),

where aj(x) ∈ k[x0, . . . , xn−1] and deg aj(x) j or aj(x) = 0.

Proof. We make a linear transformation x0 = y0 + λ0yn, . . . , xn−1 = yn−1 + λn−1yn and
xn = λnyn, where λi are undetermined constants of k. By this transformation, each power

product of t(x) is

xi00 . . . x
in−1
n−1 x

in
n = (y0 + λ0yn)

i0 . . . (yn−1 + λn−1yn)in−1(λnyn)in

= λi00 . . .λ
in
n y

s
n + · · · .

Denote t(y0 + λ0yn, . . . , yn−1 + λn−1yn,λnyn) by t(y). Then we can write

t(y) = b0(λ)y
s
n + b1(λ, y)y

s−1
n + · · ·+ bs(λ, y),

where b0(λ) is a nonzero polynomial in λ, and bj(λ, y) ∈ k[y0, . . . , yn−1]. Since k is an
infinite field, we can always choose λ = (λ0, . . . ,λn) ∈ kn+1 such that b0(λ) W= 0. So for
such a chosen λ, we write

1

b0(λ)
t(y) = ysn + a1(λ, y)y

s−1
n + · · ·+ as(λ, y).
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By transformation xi = yi, i = 0, . . . , n, and chose a =
1

b0(λ)
, the form at(x) is what we

wanted.

We proceed now to recall the notion of a ground-form which is introduced in order

to study the properties of points on a variety. We consider an unmixed d-dimensional

homogeneous ideal P ⊂ k[x]. Denote by (v) = (vij) a system of (n + 1)2 new indeter-

minates vij . We enlarge k by adjoining (v). The polynomial ring in y0, . . . , yn over k(v)

will be denoted by k(v)[y]. The general linear transformation establishes an isomorphism

between two polynomials rings k(v)[x] and k(v)[y] when in every polynomial of k(v)[y] the

substitution

yi =
n

j=0

vijxj , i = 0, 1, . . . , n,

is carried out. The inverse transformation

xi =
n

j=0

wijyj , i = 0, 1, . . . , n,

has its coefficients wij ∈ k(v). We get k(v)[x] = k(v)[y]. Every ideal P of k[x] generates

an ideal Pk(v)[x], which is transformed by the above isomorphism into the ideal

P ∗ = {f(
n

j=0

w0jyj ,
n

j=0

w1jyj , . . . ,
n

j=0

wnjyj) | f(x0, x1, . . . , xn) ∈ P} .

Then, the homogeneous ideal P in k[x] transforms into the homogeneous ideal P ∗, and
the following ideal

P ∗ ∩ k(v)[y0, . . . , yd+1] = (f(y0, . . . , yd+1))
with deg f(y0, . . . , yd+1) = s is clearly a principal ideal of k(v)[y0, . . . , yd+1]. By Lemma

2.3 we may suppose f(y0, . . . , yd+1) normalized so as to be a polynomial in the vij , and

primitive in them, so that f(y0, . . . , yd+1) is defined to within a factor in k(u, v). By a

linear projective transformation, we can choose f(y0, . . . , yd+1) so that it is regular in yd+1.

The form f(y0, . . . , yd+1) is called a ground-form of P. If P is prime, then its ground-form

is an irreducible form, but P is primary if and only if its ground-form is a power of an

irreducible form. We emphasize that if P1 and P2 are distinct d-dimensional prime ideals,

then the ground-form of P1 is not a constant multiple of the ground-form of P2, and the

ground-form of a d-dimensional ideal is product of ground-forms of d-dimensional primary

componentes, see [3, Satz 3 and Satz 4]. The concept of ground-form was formulated by

E. Noether, see [3], [6]. More recent and simplified accounts can be found in W. Krull [3].

P ∗ has a monoidal prime basis

P ∗ = (f(y0, . . . , yd+1), a(y)yd+2 − a2(y), . . . , a(y)yn − an(y)),

where a(y) ∈ k[y0, . . . , yd], ai(y) ∈ k[y0, . . . , yd+1]. Now the intersection of a variety with
a hypersurface is interested.
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LetM0, . . . ,Mm be a fixed ordering of the set of monomials in x0, . . . , xn of degree

d, where m = n+d
n − 1. Let K be an extension of k. Giving a hypersurface f of degree d

is the same thing as choosing α0, . . . ,αm ∈ K, not all zero, and letting

fα = α0M0 + · · ·+ αmMm.

In other words, each hypersurface fα of degree d can be presented as follows

fα = α0x
d
0 + α1x

d−1
0 x1 + · · ·+ αmx

d
n.

Let u0, . . . , um be the new indeterminates. The form fu = u0M0 + · · ·+ umMm is called

a generic form and Hu = V (fu) is called the generic hypersurface.

Theorem 2.4. Let V ⊂ Pnk , n 3, be a variety of dimension d, and let Hα = V (fα) be a

hypersurface of Pnk(α) such that V W⊂ V (fα) and V ∩ V (fα) W= ∅. Then the section V ∩Hα

is again a variety of dimension d− 1 for almost all α.
Proof. Put p = I(V ). Suppose that fu = u0M0+· · ·+umMm is the generic form. Since the

irreducibility of a variety is preserved by finite pure transcendental extension of ground-

field, V is still a variety in Pnk(u). We have I(V ∩Hu) = (p, fu), and by [8, 34 Satz 2], the
intersection V ∩Hu is a variety of dimension d− 1. Using a general linear transformation,
the ground-form of (p, fu) can be assumed as a form E(x0, . . . , xd−1, u, v). By [6, Theorem
6], E(x0, . . . , xd−1,α, v) is the ground-form of (p, fα) or of V ∩Hα. Since V ∩Hu is a variety,
E(x0, . . . , xd−1, u, v) is a power of an irreducible form. Since E(x0, . . . , xd−1,α, v) is the
same power of an irreducible form by [6, Lemma 8], V ∩Hα is again a variety. Because

dim(p, fα) = dim(p, fu) by Lemma 1.1, V ∩Hα has the dimension d− 1.
A variety V of Pnk is nondegenerate if it does not lie in any hyperplane. Put I(V ) =

j 1 Ij . Notice that V is nondegenerate if and only if I1 = 0 or hV (1) = n+ 1. We now

consider the intersection W = V ∩H of a nondegenerate variety V with a hyperplane

H : f = α0x0 + · · ·+ αnxn = 0.

From the above theorem it follows the following corollary.

Corollary 2.5. Let V be a nondegenerate variety of Pnk with dimV 1. Let W =

V ∩ Hα ⊂ Hα
∼= Pn−1k(α) be a hyperplane section of V. Then W is again a nondegenerate

variety of Pn−1k(α) with dimW = dimV − 1 if dimV > 1 for almost all α. In the case

dimV = 1, W is a set of s = deg(V ) points conjugate relative to k(α).

Proof. By Theorem 2.4, W is a variety of dimension dimV − 1. Set p = I(V ) and

fu = u0x0+ · · ·+ unxn. Since pk(u)[x] : fu = pk(u)[x], by Lemma 2.1 and Lemma 2.2, we
obtain

h(1; (p, fu)) = h(1; p)− h(0; p) = n+ 1− 1 = n.
By Lemma 1.3, we have

hW (1) = h(1; (p, fα)) = h(1; p)− h(0; p) = n+ 1− 1 = n.
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Then hW (1) = n. Hence W is again a nondegenerate variety of Pn−1k(α). In the case dimV =

1, we get dimW = 0. By Lemma 2.2, deg(W ) = deg(V ), and therefore W is a set of

s = deg(V ) points conjugate relative to k(α).

3. Uniform position of a hyperplane section

Before coming to apply Harris’ result about the set of points in uniform position

we first shall need to recall here some definitions of points in Pnk . A set of s points,

X = {q1, . . . , qs} of Pnk , is said to be in uniform position if any two subsets of X with the

same cardinality have the same Hilbert function. A The lemma of Harris [2] about a set

of points in uniform position is the following

Lemma 3.1. [Harris’s Lemma] Let V ⊂ Pnk , n 3, be an irreducible nondegenerate

curve of degree s, and let Hu be a generic hyperplane of Pnk(u). Then the section V ∩Hu
consists of s points in uniform position in Pn−1

k(u)
.

Upon simple computation, by repetition of Lemma 3.1 we obtain

Corollary 3.2. Let V ⊂ Pnk , n 3, be an irreducible nondegenerate variety of dimension

d > 0 and of degree s, and let Lu be a generic linear subspace of dimension h = n− d of
Pnk(u). Then the section V ∩ Lu consists of s points in uniform position in Ph

k(u)
.

Theorem 3.3. Let V ⊂ Pnk , n 3, be an irreducible nondegenerate variety of dimension

d > 0 and of degree s, and let Lα be a linear subspace of dimension h = n − d of Pnk
determined by linear forms

fi = αi0x0 + αi1x1 + · · ·+ αinxn, i = 1, . . . , d,

where (α) = (αij) ∈ kd(n+1). Then the section V ∩ Lα consists of s points in uniform
position for almost all α.

Proof. By Lu we denote a generic linear subspace of dimension h = n − d of Pnk(u) with
defining equations

fi = ui0x0 + ui1x1 + · · ·+ uinxn, i = 1, . . . , d,

where (u) = (uij) is a family of d(n+1) indeterminates uij . By Corollary 3.2, the section

V ∩ Lu consists of s points in uniform position in Phk(u). The ideal

P = (I(V )k(u)[y], f1, . . . , fd)

is a 0-dimensional homogeneous prime ideal. We enlarge k(u) by adjoining (v) and intro-

duce the linear projective transformation

yi =
n

j=0

vijxj , i = 0, 1, . . . , n.
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We get k(u, v)[x] = k(u, v)[y], and the ideal P ∗ may be presented as

P ∗ = (f(u, v, y0, y1), a(u, v, y0)y2 − a2(u, v, y0, y1), . . . , a(u, v, y0)yn − an(u, v, y0, y1)).

The form f(u, v, y0, y1) is the ground-form of P. By substitution (u, v) → (α) we obtain

a linear subspace Lα of dimension h = n− d of Pnk , by Lemma 1.1, determined by linear
forms

(fi)α = αi0x0 + αi1x1 + · · ·+ αinxn, i = 1, . . . , d.

The ideal of the section V ∩ Lα is Pα = (I(V ), (f1)α, . . . , (fd)α)). Then

P ∗α = (f(α, y0, y1), a(α, y0)y2 − a2(α, y0, y1), . . . , a(α, y0)yn − an(α, y0, y1)).

By [7, Theorem 6], the form f(α, y0, y1) is the ground-form of Pα. It is a specialization of

f(u, v, y0, y1). Since V ∩ Lu is irreducible, f(v, y0, y1) is separable. It is well-known that
f(α, y0, y1) is separable, too. There is

f(α, y0, y1) = (y1 − (γ1)αy0) . . . (y1 − (γs)αy0).

The zeros of f(α, 1, y1) are the specialization of zeros of f(u, v, 1, y1). By Lemma 1.3, the

proof is completed.

The set Y = {P1, . . . , Pr} is said to be in generic position if the Hilbert function
satisfies hY (t) = min{r, t+n

n }. The following result shows that almost all the section of an
irreducible nondegenerate variety of dimension d > 0 and a linear subspace of dimension

h = n− d is a set of points in generic position
Corollary 3.4. Let V ⊂ Pnk , n 3, be an irreducible nondegenerate variety of dimension

d > 0 and of degree s, and let Lα be a linear subspace of dimension h = n − d of Pnk
determined by linear forms

fi = αi0x0 + αi1x1 + · · ·+ αinxn, i = 1, . . . , d,

where (α) = (αij) ∈ kd(n+1). Then the Hilbert function of every subset Y of the section

X = V ∩Lα consisting r points, r ∈ {1, . . . , s}, satisfies hY (t) = min{r, hX(t)} for almost
all α.

Proof. By [1, Proposition 1.14], for any r ∈ {1, . . . , s} there is a subcheme Z of of X

consisting of r points such that hZ(t) = min{r, hX(t)}. By Theorem 3.3, the Hilbert

function of every subset Y of X consisting r points satisfies hY (t) = hZ(t) for almost all

α. Hence hY (t) = min{r, hX(t)} for almost all α.
Recall that a set of s points in Pn is called a Cayley-Bachbarach scheme if every

subset of s − 1 points has the same Hilbert function. As a sequence of Theorem 3.3 we

have still the following corollary.
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Corollary 3.5. Let V ⊂ Pnk , n 3, be an irreducible nondegenerate variety of dimension

d > 0 and of degree s, and let Lα be a linear subspace of dimension h = n − d of Pnk
determined by linear forms

fi = αi0x0 + αi1x1 + · · ·+ αinxn, i = 1, . . . , d,

where (α) = (αij) ∈ kd(n+1). Then the section X = V ∩Lα is a Cayley-Bachbarach scheme
for almost all α.
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