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Abstract. In this paper we consider the upper (lower) - stability of Lyapunov exponents of

linear differential equations in Rn . Sufficient conditions for the upper - stability of maximal

exponent of linear systems under linear perturbations are given. The obtained results are

extended to the system with nonlinear perturbations.
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1. Introduction

Let us consider a linear system of differential equations

ẋ = A(t)x; t ≥ t0 ≥ 0. (1)

where A(t) is a real n×n - matrix function, continuous and bounded on [t0; +∞). It is well known that
the above assumption guarantees the boundesness of the Lyapunov exponents of system (1). Denote

by

λ1;λ2; ...;λn (λ1 ≤ λ2 ≤ ... ≤ λn)

the Lyapunov exponents of system (1).

Definition 1. The maximal exponent λn of system (1) is said to be upper - stable if for any given
ε > 0 there exists δ = δ(ε) > 0 such that for any continuous on [t0; +∞) n × n - matrix B(t),
satisfying ‖B(t)‖ < δ, the maximal exponent µn of perturbed system

ẋ = [A(t) +B(t)]x, (2)

satisfies the inequality

µn < λn + ε. (3)

If ‖B(t)‖ < δ implies µ1 > λ1 − ε, we say that the minimal exponent λ1 of system (1) is lower -
stable.

In general, the maximal (minimal) exponent of system (1) is not always upper (lower) - stable

[1]. However, if system (1) is redusible (in the Lyapunov sense) then its maximal (minimal) exponent

is upper (lower) - stable. In particular, if system (1) is periodic then it has this property [2,3]. A

problem arises: In what conditions the maximal (minimal) exponent of nonreducible systems is upper

(lower) - stable? The aim of this paper is to show a class of nonreducible systems, having this property.
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2. Preliminary lemmas

Lemma 1. Let system (1) be regular in the Lyapunov sense. The maximal exponent λn is upper -
stable if only if the minimal exponent of the adjoint system to (1) is lower - stable.
Proof. We denote by

α1;α2; ...;αn (α1 ≥ α2 ≥ ... ≥ αn)

the Lyapunov exponents of the adjoint system to (1):

ẏ = −A∗(t)y. (4)

According to the Perron theorem, we have

λ1 + α1 = 0, λn + αn = 0. (5)

If the maximal exponent λn of system (1) is upper - stable then the minimal exponent αn of system

(4) is lower - stable. In fact, denoting by

β1; β2; ...; βn (β1 ≥ β2 ≥ ... ≥ βn)

the Lyapunov exponents of adjoint system to (2), we have

β1 + µ1 = 0, βn + µn = 0. (6)

Hence

βn = −µn > −λn − ε = αn − ε if ‖B∗(t)‖ < δ. (7)

Conversely, suppose that the minimal exponent αn is lower - stable, then if (7) is satisfied we have

βn ≥ αn − ε.

Then

µn = −βn < −αn + ε = λn + ε.

Which proves the lemma.

Consider now a nonlinear system of the form

ẋ = A(t)x+ f(t, x). (8)

Lemma 2. (Principle of linear inclusion) [1] Let x(t) be an any nontrivaial solution of system (8).
There exists a matrix F (t) such that x(t) is a solution of the linear system

ẏ = [A(t) + F (t)]y.

Moreover, if f(t, x) satisfies the condition

‖f(t, x)‖ ≤ g(t)‖x‖; ∀t ≥ t0; ∀x ∈ Rn,

then matrix F (t) satisfies the inequality

‖F (t)‖ ≤ g(t); ∀t ≥ t0.

The proof of Lemma 2 is given in [1].
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3. Main results

3.1. Stability of system with the linear perturbations

In this section we consider systems of two linear differential equations in R2:

ẋ = A(t)x (9)

ẋ = A(t)x+B(t)x. (10)

We denote by µ1;µ2 and λ1;λ2 (µ1 ≤ µ2; λ1 ≤ λ2) the exponents of systems (9) and (10) respec-
tively. Let:

A(t) =
(
a11(t) a12(t)
a21(t) a22(t)

)
; B(t) =

(
b11(t) b12(t)
b21(t) b22(t)

)

We suppose thatA(t), B(t) are real matrix functions, continuous on [t0; +∞) and supt≥t0 ‖A(t)‖ =
M < +∞.

Theorem 1. Let system (9) be regular and there exists a constant C > 0 such that
∫ ∞

t0

√
[a22(t) − a11(t)]2 + [a21(t) + a12(t)]2 dt ≤ C < +∞,

then the maximal exponent λ2 of system (9) is upper - stable.
Proof. Let

W (t) =
√

[a22(t) − a11(t)]2 + [a21(t) + a12(t)]2.

According to the Perron theorem [1,4] there exists an orthogonal matrix function U(t) (i.e. U∗(t) =
U−1(t), ∀t ≥ t0) such that by the following transformation

x = U(t)y (11)

the system ẋ = A(t)x is reduced to
ẏ = P (t)y (12)

where P (t) is a matrix of the triangle form:

P (t) =
(
p11(t) p12(t)
0 p22(t)

)
.

The matrix P (t) is defined as P (t) = U−1(t)A(t)U(t)− U−1(t)U̇(t).
Now we show that if matrix A(t) is bounded on [t0; +∞), then matrix P (t) is also bounded

on this interval, i. e. exists a constant M1 > 0 such that ‖P (t)‖ ≤M1, ∀t ≥ t0. Indeed, let:

Ã(t) = (ãij(t)) = U−1(t)A(t)U(t); V (t) = (vij(t)) = U−1(t)U̇(t).

It is easy to show that V ∗(t) = −V (t). This implies vii(t) = 0, ∀i = 1, 2. Thus, we get

vij(t) =





−ãji(t) if i < j

0 if i = j

ãij(t) if i > j.

Since A(t), U(t), U−1(t) are bounded, matrix P (t) is also bounded on [t0; +∞). Let ‖P (t)‖ ≤
M1, ∀t ≥ t0. Taking the same Perron transformation to system (10), we obtain

ẋ = U̇(t)y + U(t)ẏ = A(t)x+B(t)x
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⇔ U(t)ẏ = A(t)x+ B(t)x− U̇(t)y

⇔ U(t)ẏ = A(t)U(t)y + B(t)U(t)y − U̇(t)y

⇔ ẏ = [U−1(t)A(t)U(t) − U−1(t)U̇(t)]y + U−1(t)B(t)U(t)y.
Denoting Q(t) = U−1(t)B(t)U(t), the last equation is in the form

ẏ = P (t)y +Q(t)y. (13)

Writing triangle matrix P (t) as follows:

P (t) =
(
p11(t) p12(t)

0 p22(t)

)
=
(
p11(t) 0
0 p22(t)

)
+
(

0 p12(t)
0 0

)

and putting P̃ (t) =
(

p11(t) 0
0 p22(t)

)
; Q̃(t) = Q(t) +

(
0 p12(t)
0 0

)
,

we have

ẏ = P̃ (t)y + Q̃(t)y. (14)
Taking the linear transformation y = Sz with

S =

(
M1
δ 0

0
√

M1
δ

)

,

from (14) we get the following equivalent equation

ż = S−1P̃ (t)Sz + S−1Q̃(t)Sz = P̃ (t)z + S−1Q̃(t)Sz. (15)

Denoting by Q̂(τ) the similar matrix of matrix Q̃(τ), we have

Q̂(τ) = S−1Q̃(τ)S = S−1Q(τ)S + S−1

(
0 p12(τ)
0 0

)
S,

which gives

‖Q̂(τ)‖ ≤ ‖S−1Q(τ)S‖+ ‖S−1

(
0 p12(τ)
0 0

)
S‖. (16)

The solutions of the homogeneous system ż = P̃ (t)z is defined as follows

ż = P̃ (t)z ⇔
(
ż1
ż2

)
=
(

p11(t) 0
0 p22(t)

)(
z1
z2

)
⇔




z1(t) = C1e

∫ t
t0
p11(τ)dτ

z2(t) = C2e
∫ t

t0
p22(τ)dτ .

Therefore

Φ(t, τ) =

(
e
∫ t
t0
p11(s)ds−

∫ τ
t0
p11(s)ds 0

0 e
∫ t

t0
p22(s)ds−

∫ τ
t0
p22(s)ds

)

is the Cauchy matrix of this system.

The solution satisfied the initial condition z(t0) = z0 of nonhomogeneous system (15) is given

by [5]

z(t) = Φ(t, t0)z0 +
∫ t

t0

Φ(t, τ)S−1Q̃(τ)Sz(τ)dτ,

which is the same as Φ−1(t, t0)z(t) = z0 +
∫ t

t0

Φ−1(t, t0)Φ(t, τ)S−1Q̃(τ)Sz(τ)dτ

or Φ−1(t, t0)z(t) = z0 +
∫ t

t0

Φ(t0, τ)S−1Q̃(τ)SΦ(τ, t0)Φ−1(τ, t0)z(τ)dτ.
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Then

‖Φ−1(t, t0)z(t)‖ ≤ ‖z0‖ +
∫ t

t0

‖Φ(t0, τ)S−1Q̃(τ)SΦ(τ, t0)‖‖Φ−1(τ, t0)z(τ)‖dτ (17)

(t ≥ τ, s ≥ t0)
Denoting by q̃ij(t) the elements of matrix Q̃(t) and let

D = Φ(t0, τ)S−1Q̃(τ)SΦ(τ, t0),

we have

D =

(
e
−

∫ τ
t0
p11(s)ds 0

0 e
−

∫ τ
t0
p22(s)ds

)
S−1

(
q̃11(τ) q̃12(τ)
q̃21(τ) q̃22(τ)

)
S

(
e
∫ τ
t0
p11(s)ds 0
0 e

∫ τ
t0
p22(s)ds

)

=

(
q̃11(τ) q̃12(τ)e

∫ τ
t0

[p22(s)−p11(s)]ds

q̃21(τ)e
∫ τ
t0

[p11(s)−p22(s)]ds q̃22(τ)

)
.

We can verify that
∥∥∥∥∥S

−1

(
0 p12(τ)
0 0

)
S

∥∥∥∥∥ =

∥∥∥∥∥


0 p12(τ)

√
δ

M1
0 0



∥∥∥∥∥ ≤

√
δ
√
M1.

Since

‖Q(τ)‖ = ‖U−1(τ)B(τ)U(τ)‖ ≤ ‖U−1(τ)‖‖B(τ)‖‖U(τ)‖ ≤ 1.δ.1 = δ,

denoting max{1 +
√

1
M1

; 1 +
√
M1} = M2 and chosing δ small enough such that 0 < δ < 1, we have

‖S−1Q(τ)S‖ =

∥∥∥∥∥


q11(τ) q12(τ)

√
δ
M1

q21(τ)
√

M1
δ q22(τ)



∥∥∥∥∥ ≤ max{δ(1 +

√
δ

M1
); δ(1 +

√
M1

δ
}

= max{
√
δ(
√
δ + δ

√
1
M1

;
√
δ(
√
δ +

√
M1} ≤

√
δmax{1 +

√
1
M1

; 1 +
√
M1} :=

√
δM2.

Consequently, applying the above inequalities to (16), we have ‖Q̂(τ)‖ ≤ 2M2

√
δ.

Now, we establish the norm of matrix D as follows:

It is known that in R2 orthogonal matrix U(t) has just one of two the following forms:

a) U(t) =
(

cosφ(t) sinφ(t)
sinφ(t) − cosφ(t)

)
; b) U(t) =

(
cosφ(t) − sinφ(t)
sinφ(t) cosφ(t)

)
.

Without loss of the generality we suppose that matrix U(t) has the form a). In this case, we have

U−1(t) =
(

cosφ(t) sinφ(t)
sinφ(t) − cosφ(t)

)
.

Since in Perron transformation x = U(t)y, where U(t) is a orthogonal matrix, the diagonal elements
of matrix P (t) and matrix U−1(t)A(t)U(t) are the same p11(t) and p22(t). Therefore we obtain that

p22(t) − p11(t) = [a22(t)] − a11(t)] cos2φ(t) − [a21(t) + a12(t)] sin2φ(t).

It is easy to see that, there is a function ψ(t) such that

p22(t) − p11(t) =
√

[a22(t)] − a11(t)]2 + [a21(t) + a12(t)]2 cos[2φ(t) + ψ(t)]

= W (t) cos[2φ(t) + ψ(t)].
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Since ‖q̃ij(t)‖ ≤ ‖Q̃(t)‖ ≤ 2M2

√
δ, we have

‖D‖ =

∥∥∥∥∥

(
q̃11(τ) q̃12(τ)e

∫ τ
t0

[p22(s)−p11(s)]ds

q̃21(τ)e
∫ τ
t0

[p11(s)−p22(s)]ds
q̃22(τ)

)∥∥∥∥∥

≤ 2M2

√
δ[2 + e

∫ τ
t0

[p22(s)−p11(s)]ds + e
∫ τ

t0
[p11(s)−p22(s)]ds]

= 2M2

√
δ[2 + e

∫ τ
t0
W (s) cos[2φ(s)+ψ(s)]ds + e

∫ τ
t0
W (s) cos[2φ(s)+ψ(s)−π]ds].

From the assumptions
∫ +∞
t0

W (t)dt ≤ C < +∞, we have

‖D‖ ≤ 2M2

√
δ(2 + 2eC) = M3

√
δ where M3 := 2M2(2 + 2eC).

Applying the last inequality to (17), we get

‖Φ−1(t, t0)z(t)‖ ≤ ‖z0‖ +
∫ t

t0

M3

√
δ‖Φ−1(τ, t0)z(τ)‖dτ. (18)

(t ≥ τ, s ≥ t0)
According to the Gronwall - Belman inequality [1, 4, 5], we have

‖Φ−1(t, t0)z(t)‖ ≤ ‖z0‖eM3

√
δ
∫ t

t0
dτ = ‖z0‖eM3

√
δ(t−t0)

⇒




e
−

∫ t
t0
p11(τ)dτz1(t) ≤ ‖z0‖eM3

√
δ(t−t0)

e
−

∫ t
t0
p22(τ)dτz2(t) ≤ ‖z0‖eM3

√
δ(t−t0)

⇔




z1(t) ≤ ‖z0‖eM3

√
δ(t−t0)e

∫ t
t0
p11(τ)dτ

z2(t) ≤ ‖z0‖eM3

√
δ(t−t0)e

∫ t
t0

p22(τ)dτ

.

Using properties of Lyapunov exponents, we get



χ[z1] ≤ χ[‖z0‖eM3

√
δ(t−t0)] + χ[e

∫ t
t0
p11(τ)dτ ] = M3

√
δ + limt→+∞

1
t

∫ t
t0
p11(τ)dτ

χ[z2] ≤ χ[‖z0‖eM3

√
δ(t−t0)] + χ[e

∫ t
t0
p22(τ)dτ ] = M3

√
δ + limt→+∞

1
t

∫ t
t0
p22(τ)dτ.

It is clear that in Perron transformations the Lyapunov exponents are unchanged [1,4]. Thus, for any

small enough given ε > 0, chosing 0 < δ < ( ε
M3

)2, we obtain that
{
χ[x1] = χ[z1] ≤ λ1 + ε

χ[x2] = χ[z2] ≤ λ2 + ε
or

{
µ1 ≤ λ1 + ε

µ2 ≤ λ2 + ε.

The same result is proved for the case, when matrix U(t) has form b).
The proof of theorem is completed.

Corollary 1. Suppose that all assumptions of Theorem 1 hold. Then the minimal exponent of system

(9) is lower - stable.

Proof. From Lemma 1 it follows that minimal exponent of system (9) is lower - stable if the maximal

exponent of adjoint system ẋ = −A∗(t)x to this system is upper - stable. According to Theorem 1,
the last requirement will be satisfied if the following inequality holds

∫ ∞

t0

√
[−a22(t) + a11(t)]2 + [−a21(t) − a12(t)]2 dt ≤ C < +∞

⇔
∫ ∞

t0

√
[a22(t) − a11(t)]2 + [a21(t) + a12(t)]2 dt ≤ C < +∞.
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This proves the corollary.

3.2. Stability of systems with nonlinear perturbations

We consider the following linear system with nonlinear perturbation in Rn:

ẋ = A(t)x+ f(t, x). (19)

Since the system (19) is nonlinear, it is dificult to study its spectrum [5]. However under the suitable

conditions we can obtain some results on it, for example, to study supremum of its all exponents. Let

us denote this supremum by µsup.

Definition 2. The maximal exponent λn of homogeneous system ẋ = A(t)x is said to be upper -
stable under the nonlinear perturbation f(t, x) if for any given ε > 0 there exists δ = δ(ε) > 0 such
that if following inequality holds ‖f(t, x)‖ ≤ δ‖x‖, then

µsup < λn + ε. (20)

We consider now the system (9) and (19) in R2. For this space the following result is obtained:

Theorem 2. Suppose that:

i) System (9) is regular and there exists a constant C > 0 such that
∫ ∞

t0

√
[a22(t) − a11(t)]2 + [a21(t) + a12(t)]2 dt ≤ C < +∞.

ii) Function f(t, x) is continuous on [t0; +∞) and there exists a function g(t) > 0, ∀t ≥ t0,

satisfying the condition:

‖f(t, x)‖ ≤ g(t)‖x‖, ∀t ≥ t0

Then maximal exponent λ2 of system (9) under perturbation f(t, x) is upper - stable.
Proof. We denote by x0(t) = x(t0, x0, t) the solution of system (19), which satisfies initial condition
x0(t0) = x0. Denote by Fx0(t) the function matrix corresponding to this solution in the sense of
Lemma 2, i.e. for this solution there exists a function matrix Fx0(t) such that x0(t) is a solution of
the following linear system

ẋ = A(t)x+ Fx0(t)x, (x0 ∈ R2), (21)

where ‖Fx0(t)‖ ≤ g(t), ∀t ≥ t0. We denote by µ
x0
1 ≤ µx0

2 the elements of spectrum of nonlinear

system (19). According to Theomrem 1, for every given ε > 0 there exists δ > 0 such that

‖Fx0(t)‖ ≤ δ implies µx0
2 < λ2 +

ε

2
, ∀x0 ∈ R2.

From ‖Fx0(t)‖ ≤ g(t) ≤ δ, we have

µx0
2 ≤ λ2 +

ε

2
, ∀x0 ∈ R2.

Therefore, we obtain that

µsup = sup
x0∈R2

µx0
2 ≤ λ2 +

ε

2
< λ2 + ε.

The proof is therefore completed.
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Corollary 2. Suppose that conditions i) and ii) of Theorem 2 hold and the function g(t) in condition
ii) satisfies the condition

lim
t→+∞

g(t) = 0.

Then maximal exponent λ2 of system (9) under perturbation f(t, x) is upper - stable.
Proof. For every given ε > 0 there exists δ > 0 such that

‖Fx0(t)‖ ≤ δ implies µx0
2 < λ2 +

ε

2
, ∀x0 ∈ R2.

Since limt→+∞ g(t) = 0, for δ > 0 there exists T = T (δ) ≥ t0 such that 0 < g(t) < δ, ∀t ≥ T.

Thus, if t ≥ T then ‖Fx0(t)‖ ≤ g(t) ≤ δ. Taking to limit as t→ +∞, we have

µx0
2 ≤ λ2 +

ε

2
, ∀x0 ∈ R2.

Taking to supremum over all x0 ∈ R2, we have

µsup = sup
x0∈R2

µx0
2 ≤ λ2 +

ε

2
< λ2 + ε.

The proof is therefore completed.

Example. Consider the system




ẋ1 = (1 +
1
t2

)x1

ẋ2 =
√

3
t2
x1 + (1 +

2
t2

)x2

t ≥ 1.

(22)

It is easy to see that this system is nonredusible and nonperiodic. We can show that for this system:

λ1 = λ2 = 1 and lim
t→+∞

1
t

∫ t

1
SpA(s)ds = 2.

Therefore, system (22) is regular. We can see also for this system:

W (t) =

√

[(1 +
2
t2

)− (1 +
1
t2

)]2 + (
√

3
t2

)2 =
2
t2
.

Therefore, we get ∫ t

1

W (s)ds = 2 − 2
t
≤ 2, ∀t ≥ 1.

Thus, system (22) satisfies all conditions of Theorem 1. Its maximal exponent is upper - stable.
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