
VNU. JOURNAL OF SCIENCE, Mathematics - Physics. T.XXI, N04 - 2005

AN IMPLICIT SCHEME FOR INCOMPRESSIBLE

FLOW COMPUTATION WITH ARTIFICIAL

COMPRESSIBILITY METHOD
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Abstract. To simulate the incompressible flow in complex three-dimensional geom-
etry efficiently and accurately, a solver based on solution of the Navier-Stokes equa-
tions in the generalized curvilinear coordinate system was developed. The system
of equations in three-dimension are solved simultaneously by the artificial compress-
ibility method. The convective terms are differenced using a flux difference splitting
approach. The viscous terms are differenced using second-order accurate central dif-
ferences. An implicit line relaxation scheme is employed to solve the numerical system
of equations. The solver was tested for two cases including flow past a circular cylinder
and flow around a hemispherical head of a cylindrical object.

1. Introduction

Solutions to the incompressible Navier-Stokes equations are of interest in many fields

of computational fluid dynamics. The problem of coupling changes in the velocity field with

changes in pressure field while satisfying the continuity equation is the main difficulty in

obtaining solutions to the incompressible Navier-Stokes. There are some types of method

have been developed to solve the equations. The stream-function vorticity formulation of

the equation has been used often when only two-dimensional problems are of interest, but

this has no straightforward extension.

Other methods using primitive variables can be classified into two groups. The

first group of methods can be classified as pressure-based methods. In these methods, the

pressure field is solved by combining the momentum and mass continuity equations for

form a pressure or pressure-correction equation ([1], [2]).

The second group of methods employs the artificial compressibility formulation.

This idea was first introduced by Chorin [3] for use in obtaining steady-state solutions

to the incompressible flow. Several authors have employed this method successfully in

computing unsteady problems. Mercle and Athavale [4] presented solution using this

approach in two-dimensional generalized coordinates. Park and Sankar [5] also present

solutions for three-dimensional problem using explicit scheme.
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The paper presents an implicit solution procedure using the method of artificial

compressibility. For numerical accuracy and stability, the convective terms are differenced

by and an upwind scheme based on the method of Roe [6] that is biased by the sign of the

eigenvalues of local flux Jacobian. The time-dependent solution is obtained by subiterating

at each physical time step and driving the divergence of velocity toward zero.

In the following sections, the mathematical basis of the method is presented, includ-

ing the governing equation and the transformation into generalized curvilinear coordinates.

The specific details of the upwind scheme are given, follow by the details of the implicit

line relaxation scheme used to solve the equations. The computed results show the robust-

ness and accuracy of the code by presenting two sample problems, the flow past a circular

cylinder and the flow around a hemispherical head of a cylindrical object.

2. Governing Equations in the Physical Domain

Three-dimensional incompressible Reynolds averaged Navier-Stokes equation in a

Cartesian coordinate system may be written as follow:

∂Q

∂t
+
∂(E −Eν)

∂x
+
∂(F − Fν)

∂y
+
∂(G−Gν)

∂z
= 0 (1)

where Q, E, F , G, Eν , Fν and Gν are vectors defined as:

Q =


0
u
v
w

 ; E =


u

u2 + p/ρ
uv
uw

 ; F =


v
uv

v2 + p/ρ
vw

 ; G =


w
uw
vw

w2 + p/ρ



Eν = ρ−1


0
τxx
τxy
τxz

 ; Fν = ρ−1


0
τyx
τyy
τyz

 ; Gν = ρ−1


0
τzx
τzy
τzz

 (2)

The quantity, ρ, is the fluid density, p is the pressure, and u, v and w are the Cartesian

components of velocity. The stress term given by

τxx =
2

3
(µ+ µt)(2

∂u

∂x
− ∂v

∂y
− ∂w

∂z
) ; τxy = (µ+ µt)(

∂u

∂y
+
∂v

∂x
) = τyx

τyy =
2

3
(µ+ µt)(2

∂v

∂y
− ∂u

∂x
− ∂w

∂z
) ; τxz = (µ+ µt)(

∂w

∂x
+
∂u

∂z
) = τzx (3)

τzz =
2

3
(µ+ µt)(2

∂w

∂z
− ∂u

∂x
− ∂v

∂y
) ; τyz = (µ+ µt)(

∂v

∂z
+
∂w

∂y
) = τzy

where µ is the laminar viscosity and µt is the turbulent viscosity.
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The above set of equation is put into non-dimensional form by scaling as follows:

x∗ =
x

L
; y∗ =

y

L
; z∗ =

z

L
; u∗ =

u

V
; v∗ =

v

V
; w∗ =

w

V

p∗ =
p

ρV 2
; t∗ =

t

(L/V )
; µ∗t =

µt
µ

(4)

where the non-dimensional variables are denoted by an asterisk. V is the reference velocity

and L is the reference length used in the Reynolds number

Re =
ρV L

µ

By applying this non-dimensionalizing procedure (4) to Equations (1)-(3), the following

non-dimensional equations are obtained:

∂Q∗

∂t∗
+
∂(E∗ −E∗ν)

∂x∗
+
∂(F ∗ − F ∗ν )

∂y∗
+
∂(G∗ −G∗ν)

∂z∗
= 0 (5)

where

Q∗ =


0
u∗

v∗

w∗

 ; E∗ =


u∗

u∗2 + p∗

u∗v∗

u∗w∗

 ; F ∗ =


v∗

u∗v∗

v∗2 + p∗

v∗w∗

 ; G∗ =


w∗

u∗w∗

v∗w∗

w∗2 + p∗



E∗ν =
1

Re


0
τ∗xx
τ∗xy
τ∗xz

 ; F ∗ν =
1

Re


0
τ∗yx
τ∗yy
τ∗yz

 ; G∗ν =
1

Re


0
τ∗zx
τ∗zy
τ∗zz

 (6)

here

τ∗xx =
2

3
(1 + µ∗t )(2

∂u∗

∂x∗
− ∂v∗

∂y∗
− ∂w∗

∂z∗
) ; τ∗xy = (1 + µ

∗
t )(

∂u∗

∂y∗
+
∂v∗

∂x∗
) = τ∗yx

τ∗yy =
2

3
(1 + µ∗t )(2

∂v∗

∂y∗
− ∂u∗

∂x∗
− ∂w∗

∂z∗
) ; τ∗xz = (1 + µ

∗
t )(

∂w∗

∂x∗
+
∂u∗

∂z∗
) = τ∗zx (7)

τ∗zz =
2

3
(1 + µ∗t )(2

∂w∗

∂z∗
− ∂u∗

∂x∗
− ∂v∗

∂y∗
) ; τ∗yz = (1 + µ

∗
t )(

∂v∗

∂z∗
+
∂w∗

∂y∗
) = τ∗zy

Note that the non-dimensional form of the governing equations given by Equations (5)

is identical (except for the asterisks) to the dimensional form given by Equations (1).

For convenience, from now on the asterisks will be dropped from the non-dimensional

equations.
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3. Governing Equations in the Computational Domain

If governing equations in a Cartesian system are directly used to flow past complex

geometry, the imposition of boundary conditions will require a complicated interpolation

of the data on local grid lines since the computational boundaries of complex geometry do

not coincide with coordinate lines. This leads to a local loss of accuracy in the computed

solutions. To avoid these difficulties, a transformation from the physical domain (Cartesian

coordinates (x, y, z)) to computational domain (generalized curvilinear (ξ, η, ζ)) is used.

This means a distorted domain in the physical space is transformed in to a uniformly

spaced rectangular domain in the generalized coordinate space [7].

If we assume that there is a unique, single-valued relationship between the general-

ized coordinates and the physical coordinate and let the general transformation be given

by

ξ = ξ(x, y, z) ; η = η(x, y, z) ; ζ = ζ(x, y, z)

then the governing equation (5) can be transformed as:

∂Q̂

∂t
+
∂(Ê − Êν)

∂ξ
+
∂(F̂ − F̂ν)

∂η
+
∂(Ĝ− Ĝν)

∂ζ
= 0 (8)

where

Q̂ =
1

J


0
u
v
w

 ; Ê = 1

J


U

uU + pξx
vU + pξy
wU + pξz

 ; F̂ = 1

J


V

uV + pηx
vV + pηy
wV + pηz

 ; Ĝ = 1

J


W

uW + pζx
vW + pζy
wW + pζz



Êν =
(1 + νt
J


0

( ξ. ξ)uξ + ( ξ. η)uη + ( ξ. ζ)uζ
( ξ. ξ)vξ + ( ξ. η)vη + ( ξ. ζ)vζ
( ξ. ξ)wξ + ( ξ. η)wη + ( ξ. ζ)wζ



F̂ν =
(1 + νt
J


0

( η. ξ)uξ + ( η. η)uη + ( η. ζ)uζ
( η. ξ)vξ + ( η. η)vη + ( η. ζ)vζ
( η. ξ)wξ + ( η. η)wη + ( η. ζ)wζ



Ĝν =
(1 + νt
J


0

( ζ. ξ)uξ + ( ζ. η)uη + ( ζ. ζ)uζ
( ζ. ξ)vξ + ( ζ. η)vη + ( ζ. ζ)vζ
( ζ. ξ)wξ + ( ζ. η)wη + ( ζ. ζ)wζ


with U , V and W are contravariant velocities:

U = uξx + vξy +wξz ; V = uηx + vηy + wηz ; W = uζx + vζy +wζz
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and J = det

 ξx ξy ξz
ηx ηy ηz
ζx ζy ζz

 is the Jacobian of transformation
4. Artificial compressibility method

Artificial compressibility method flow is introduced by adding a time derivative of

pressure to the continuity equation. In the steady-state formulation, the equations are

marched in a time-like fashion until the divergence of velocity vanishes. The time variable

for this process no longer represents physical time. Therefore, in the momentum equations

t is replaced with τ , which can be thought of as an artificial time or iteration parameter.

As a result, the governing equations can be written in the following form:

∂Q̂

∂τ
+
∂(Ê − Êν)

∂ξ
+
∂(F̂ − F̂ν)

∂η
+
∂(Ĝ− Ĝν)

∂ζ
= 0 (9)

where Q̂ = 1
J


p
u
v
w

 and τ is the artificial time variable
The extension of artificial compressibility method to unsteady flow is introduced by

adding physical time derivative of velocity components to three momentum equations in

Equations (9) (see [4], [5] and [8]). The obtained equations can be written as:

Γ
∂Q̂

∂τ
+ Γe

∂Q̂

∂t
+
∂(Ê − Êν)

∂ξ
+
∂(F̂ − F̂ν)

∂η
+
∂(Ĝ− Ĝν)

∂ζ
= 0 (10)

where Γ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 and Γe =

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Unsteady solution at each physical time t is steady solution obtained by marching

in artificial time τ .

5. Numerical Method

Discretizing Equation (9) with first order finite difference for artificial time and a

backward difference for physical time term result in

Γ
Q̂k+1 − Q̂k

∆τ
+ Γe

(1 + φ)(Q̂k+1 − Q̂n)− φ(Q̂n − Q̂n−1)
∆t

+δξ(Ê − Êν)k+1 + δη(F̂ − F̂ν)k+1 + δζ(Ĝ− Ĝν)k+1 = 0 (11)
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Here k is the pseudo-iteration counter, n is the time step counter and δ represents spatial

differences in the direction indicated by the subscript. When φ = 0 the method is first-

order temporally accurate; when φ = 0.5 the method is second-order accurate. After

linearlization [9], Equations (11) have the following form:

Γ
Q̂k+1 − Q̂k

∆τ
+ Γe

(1 + φ)(Q̂k +∆Q̂k)− (1 + 2φ)Q̂n + φQ̂n−1

∆t

+δξ(Ê
k +Ak∆Q̂k) + δη(F̂

k +Bk∆Q̂k) + δζ(Ĝ
k +Ck∆Q̂k) (12)

−δξ(Êkν +Akν∆Q̂k)− δη(F̂ kν +Bkν∆Q̂k)− δζ(Ĝkν +Ckν∆Q̂k)

where ∆Q̂k = Q̂k+1 − Q̂k, A, B, C, Aν , Bν and Cν are the convective flux and viscous
flux with respect to Q̂.

A =
∂Ê

∂Q̂
; B =

∂F̂

∂Q̂
; C =

∂Ĝ

∂Q̂
; Aν =

∂Êν

∂Q̂
; Bν =

∂F̂ν

∂Q̂
; Cν =

∂Ĝν

∂Q̂

Rewriting Equations (12) such that all terms evaluated at sub-iteration k or time step n

and n − 1 are on the right hand side and all term multiplying ∆Q̂k are on the left hand

sidew
Γ+ Γe

(1 + φ)∆τ

∆t
+∆τ(δξA

k + δηB
k + δζC

k − δξAkν − δηBkν − δζCkν )
W
∆Q̂k = Rk

(13)

where

Rk = −∆τ
X
Γe
(1 + φ)Q̂k − (1 + 2φ)Q̂n + φQ̂n−1

∆t

~
−∆τ(δξÊk + δηF̂

k + δζĜ
k − δξÊkν − δηF̂ kν − δζĜkν)

Equations (13) is solved by applying an approximate factorization technique with the

use of ADI type scheme. The detailed description of this procedure can be found in

[10]. The viscous terms are approximated by central difference expressions, while the flux

splitting procedure is applied to convective terms [11]. For example, Jacobian matrix A

in Equations (13) may be expressed as:

A = KΛK−1 (14)

where Λ is the diagonal matrix formed by the eigenvalues of A, namely

Λ =


λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

 (15)



An implicit scheme for incompressible flow computation with... 7

The matrix K is

K =
�
K(1),K(2),K(3),K(4)

=
(16)

where the column K(i) is the right eigenvectors of A corresponding to λi and K
−1 is the

inverse of K.

The splitting are performed as

A = A+ +A− with A± = KΛ±K−1 (17)

where

Λ− =


λ−1 0 0 0
0 λ−2 0 0
0 0 λ−3 0
0 0 0 λ−4

 ; Λ+ =


λ+1 0 0 0
0 λ+2 0 0
0 0 λ+3 0
0 0 0 λ+4

 (18)

with definitions

λ−i =
1

2
(λi − |λi|) ; λ+i =

1

2
(λi + |λi|) (19)

Using the splitting of A given by (17), spatial difference operator of A can be derived as

δξA = δ+ξ A+ δ−ξ A (20)

where δ−ξ and δ
+
ξ are backward and forward difference operators, respectively. The similar

procedures are applied to spatial difference operator of B and C in Equations (13).

6. Turbulence modeling

In the calculations presented in this paper, the model k − ε of Chien [12] for low

Reynolds number flows is employed. Transport equations for turbulent kinetic energy k

and its dissipation rate ε are as follow,

∂(ρk)

∂t
+
∂(ρujk)

∂xj
=

∂

∂xj

w
(µ+

µt
σk
)
∂k

xj

W
+ Pk − ρε+ Sk = 0 (21)

∂(ρε)

∂t
+
∂(ρujε)

∂xj
=

∂

∂xj

w
(µ+

µt
σk
)
∂ε

xj

W
+ c1f1Pk − c2f2ρε+ Sε = 0 (22)

where

Pk = τij
∂ui
∂xj

; τij = −2
3
ρk + 2µt

w
Sij − 1

3

∂uk
∂xk

δij

]
Sij =

1

2

w
∂ui
∂xj

+
∂uj
∂xi

W
; µt = cµfµρ

k2

ε

The constants and functions are given as,

cµ = 0.99 ; c1 = 1.35 ; c2 = 1.8 ; σk = 1.0 ; σε = 1.3 ; Sk = −2µ k
y2d
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Sε = −2µ ε

y2d
exp(−0.5y+) ; f1 = 1.0 ; f2 = 1.0− 0.22 exp

^
−
w
RT
6

W2�

fµ = 1.0− exp(0.0115y+) ; RT = k2

νε
; y+ =

yduτ
ν

where yd is distance to the wall and uτ is friction velocity.

Similar to Equations (1), Equations (21) and (22) are put into non-dimensional form

and transformed into generalized curvilinear coordinate (ξ, η, ζ). The solution algorithm

uses the first-order implicit difference for unsteady term, the first-order upwind difference

for convective term and the second-order central difference for viscous terms. Because

the equations for k and ε are much stiffer than the flow equations [13], these turbulence

equations are solved separately for each time step. The obtained solution is used to

calculate the turbulent viscosity for next time step.

7. Initial and boundary conditions

The governing equations (1) or (8) and turbulence model equations (21) and (22)

require initial condition to start the calculation as well as boundary conditions at every

time step.

In the calculations presented in this paper, the uniform free-stream values are use

as initial conditions:

p = p∞ ; u = u∞ ; v = v∞ ; w = w∞ ; k = k∞ ; ε = ε∞ (23)

For external flow applications, the far-field bound is placed far away from the solid surface.

Therefore, the free-stream values are imposed at the far-field boundary except along the

outflow boundary where extrapolation for velocity components in combination with p =

p∞ is used to account for the removal of vorticity from the flow domain by convective

process [14].

On the solid surface, the no-slip condition is imposed for velocity components:

u = 0 ; v = 0 ; w = 0 (24)

The surface pressure distribution is determine by setting the normal gradient of pressure

to be zero:
∂p

∂n
= 0 (25)

The turbulent kinetic energy and normal gradient of its dissipation rate are required to

be zero on the solid boundary:

k = 0 ;
∂ε

∂n
= 0 (26)
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8. Numerical results and comparison to experiment

We tested the computation method presented here for two cases including flow past

a circular cylinder and flow around a hemispherical head of a cylindrical object.

8.1. Flow pas a circular cylinder.

The experiment was carried out by Ong and Wallace [15] for flow past a circular

cylinder with the Reynolds number Re = U0D
ν = 3900. Here U0 is free-stream velocity and

D is the diameter of cylinder. Our numerical simulation used a boundary-fitted curvilinear

coordinates grid system of 163 nodes in the circular direction (ξ) and 132 nodes in the

radial direction (η). The calculation domain and a close view of calculation grid are shown

in Fig. 1. In order to increase the resolution in regions where gradients are large, the grid

lines in the radial direction (η) were clustered near the surface. The distance between two

consecutive nodes in the radial direction started from 4.52× 10−5 near the solid surface,
increased by a factor of 1.0848.

Fig. 1. Calculation domain (left) and a close view of the calculation

grid (right)

The computation was performed with a non-dimensional time step ∆t = 1.5×10−2.
A statically converged mean flow field was obtained after 2000 time steps. Fig. 2 shows

distribution of pressure and longitudinal velocity component U near the object at t =

2000∆t. The non-dimensional values are given in these figures by using Equation (4)

with the reference length is the diameter D of cylinder and the reference velocity is the

free-stream velocity U0. A region of low pressure is formed behind the object. In front

of object, pressure strongly varies and a region of high pressure is formed near separation

point and two regions of low pressure are developed next. From Fig. 2, it can be seen the
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Fig. 2. Contour plots of pressure (left) and longitudinal velocity com-

ponent U (right) near the cylinder

development of a recirculation zone behind the object with reverse velocity.

The calculated results are compared with the corresponding experimental data.

Fig. 3(a) compares the mean measured and calculated pressure coefficients Cp =
p−p∞
0.5ρV 2∞

along the object. The agreement of calculated results with experimental data is quite

good, especially in the front region. Fig. 3(b) compares the profile of mean longitudinal

velocity component at a location in the wake behind the cylinder. For this calculated

mean cross-flow velocity profile, the agreement with experimental result is also good.

Fig. 3. Comparison between numerical simulation with measurement:

(a) mean pressure coefficient along object surface (b) profile of mean

longitudinal velocity component at x = 1.54D

8.2. Flow around a hemispherical head of a cylindrical object.

The second test case was performed for a flow around a hemispherical head of a

cylindrical object at zero-degree angle of attack (see Fig. 4). The experiment was carried

out by Rouse and McNown [16]. The Reynolds number is 1.36× 105 based on the inflow
velocity and the diameter of hemisphere.

The 3D grid system has 82x132x37 nodes in the streamwise direction (ξ), radial
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Fig. 4. Diagram of the experiment and grid lines at plane η = 0 (object

surface)

direction (η) and azimuthal direction (ζ), respectively. The grid lines were clustered both

near the surface as well as at the bend where the hemisphere meets with the cylinder.

A close view of calculating grid at plane η = 0 is also shown in Fig. 4. The calculation

domain and a close view of calculation grid at a plane ζ = const are shown in Fig. 5.

Fig. 5. Calculation domain and a close view of calculation grid at a

plane ζ = const

The computation was performed with a non-dimensional time step ∆t = 5× 10−3.
A converged mean flow field was obtained after 5000 time steps. Analysis of the calculated

results shows that flow is steady and axisymmetric. This result is suitable to experimental

observations. Fig. 6a shows the distribution of pressure near the objects. The non-

dimensional values are given in this figure. It can be seen from Fig. 6a that a region of

low pressure is formed at the bend where the hemisphere meets with the cylinder. The

region of high pressure can be seen at the separation point of flow. Fig 6b compares
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measured and calculated surface pressure distributions. It can be seen that the calculated

results match the experiment data quite well.

Fig. 6. Some calculated results of pressure: (a) Pressure distribution

at a plane ζ = const; (b) Comparison with experimental data

9. Conclusion

A method for the solution of incompressible Navier-Stokes equations in three-

dimensional generalized curvilinear coordinates is presented. The method can be used

to compute both steady-state and time-dependent flow problems. The method is based on

artificial compressibility algorithm and uses a one-order flux splitting technique for con-

vective terms and a second-order central difference for viscous terms. The flows around

a circular cylinder and around a hemispherical head of a cylindrical object are calculated

and the results are compared with experimental data. Good agreements is observed. The

method can be directly applied to many practical problems.
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