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Abstract. The correct forms of the equations of motion, of the boundary conditions and of the

reconserved energy - momentum for the a classical rigid string are given. Certain consequences

of the equations of motion are presented. We also point out that in Hamilton description of

the rigid string the usual time evolution equation Ḟ = {F, H} is modified by some boundary
terms

1. Introduction

The modified string model, so-called rigid or smooth strings, has been discussed [1 − 11]. The

action functional in this model contains in addition to the usual Nambu-Gato the term proportional to

the external curvature of the world sheet of the string.These models are expected to have many different

applications in string interpretation of QCD, in a statistical theory of random surfaces, in connection

with two dimensional, quantized gravity [12].

Our main goal in this paper is to re-derive the classical equations of motion, boundary conditions

and conserved energy - momentum of the rigid string, obtained by [4− 6]. The first reason to discuss

in detail such basis is that rigid model is an example of a Lagrangian field theory with higher order

derivatives. In such case the seemingly standard derivations contain many interesting points which

in our opinion, have not been sufficient emphasized. The second reason is that one can find in

the literature many misleading or even erroneous statements concerning in equations of motion, the

boundary conditions and the energy-momentum.

The plan of our paper is the following. In Section 2 we present the derivation of the Euler

-Lagrange equations of motion, of the boundary conditions and of the conserved energy-momentum in

the case of genetic Lagrangian with second order derivatives . In Section 3 we present the corresponding

formulae in the case of rigid string, i. e. for the specific Lagrangian given at the beginning of Section

3. There we also derive some simple consequences of the equations of motion. In the Section 4 we

point out the peculiar features of the Hamiltonian formalism appearing in the case of the open string.
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2. The Formalism

Let us suppose that the Lagrangian density L depends on the field function xµ(τ, σ) and on

their first and second derivatives.

S =

∫

Ω

d2uL(xµ, xµ,i, xµ,ij) =

∫ τ2

τ1

dτ

∫ σ2

σ1

dσL(xµ, xµ,i, xµ,ij). (1)

For the partial derivatives we introduce the following notation:

xµ,i =
∂xµ

∂ui
, xµ,ij =

∂xµ

∂ui∂uj
; i, j = 1, 2;

ẋµ =
∂xµ

∂τ
; x́µ =

∂xµ

∂σ
. (2)

where xµ = xµ(τ, σ) are fields in the two -dimensional space-time u0 = τ ; u1 = −∞ < τ < +∞;
µ = 0, 1, 2, ..., D− 1.. The following formula for the full variation of the action S is given

δS =

∫

Ω

{Λµ + ǫij∂iΠj + ∂0∂1Z}, (3)

where

εi,j =

(

0 1
−1 0

)

εi,j∂iΠj = ∂0Πj − ∂1Π0 (4)

Λµ(τ, σ) =
∂L

∂xµ

− ∂

∂τ

[

∂L

∂ẋµ

− ∂

∂τ

(

∂L

∂ẍµ

)

+
∂

∂σ

(

∂L

∂ẋ′
µ

)]

= (5)

= − ∂

∂σ

[

∂L

∂x′

µ

− ∂

∂σ

(

∂L

∂x”µ

)]

;

Π0(τ, σ) =

[

− ∂L

∂x
µ
,1

+ ∂i

(

∂L

∂x
µ
,0i

)]

δxµ − ∂L

∂x
µ
,11

δxµ,1; (6)

Π1(τ, σ) =

[

∂L

∂x
µ
,0

− ∂i

(

∂L

∂x
µ
,0i

)]

δxµ +
∂L

∂x
µ
,00

δxµ,00δxµ,0; (7)

Z(τ, σ) =
∂L

∂x
µ
,01

δxµ. (8)

Using Stokes theorem we can write δS in the following form

δS =

∫

Ω

d2uΛµδuµ +

∫

δΩ

Uidui + [Z(τ2, π)− Z(τ2, 0) + Z(τ1, π)− Z(τ1, 0)] , (9)

where δΩ denotes the boundary of the rectangle Ω. The advantage of the form of the variation δS is

that it involves the least possible number of derivatives of the variations δxµ. The remaining derivatives

of δx in formula (9) cannot be removed by any partial integrations. The Z-terms in formula (9) for

δS can be regarded as a contribution from the corner points of the rectangle R. For the closed string

they cancel each other. However, for the open string they give a nonvanishing contribution if the

Lagrangian L depends on
∂2xµ

∂u0∂u1

.
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The Z-terms have appeared because in this case of open rigid string we encounter a coincidence

of the following two mathematical obstacles: the presence of the high derivatives in the Lagrangian ,

and the fact that the field xµ(τ, σ) is defined on the finite strip 0 � σ � π, and −∞ < τ < ∞, which
has boundaries. The classical equations of the motion and the boundary conditions for the open rigid

string follow from the requirement

δS = 0 ⇔ Λµ(τ, σ) = 0, (10)

for the any variation δxµ obeying following conditions

δxµ(τ, σ) = 0, τ = τ1, τ2; σ ∈ [0, π]; (11a)

δxµ,0(τ, σ) = 0, τ = τ1, τ2; σ ∈ [0, π]. (11b)

This conditions (11b) is due to the fact that Lagrangian contains the second order derivatives

with respect to the evolution τ . From (2.11b) it follows that

δxµ,1(τ, σ) = 0, for τ = τ1, τ2; σ ∈ [0, π]. (12)

On the other hand, neither δxµ nor δxµ,1, are fixed for σ = 0, σ = π, τ ∈ (τ1, τ2). Now, it

is clear that the requirement (10) implies the following equations of motion

Λµ(τ, σ) = 0, (13)

and the following boundary conditions

Bµ(τ, σ = 0) = 0, Bµ(τ, σ = π) = 0, (14)

Cµ(τ, σ = 0) = 0, Cµ(τ, σ = π) = 0, (15)

where

Bµ(τ, σ) =
∂L

∂xµ,1
+ ∂i

(

∂L

∂xµ,1i

)

, (16)

Bµ(τ, σ) =
∂L

∂xµ,1

+ ∂i

(

∂L

∂xµ,1i

)

, (16)

and

Cµ(τ, σ) =

(

∂l

∂xµ,11

)

. (17)

In the case of the closed string δµ(τ, σ) obey the conditions δµµ(τ, σ = 0) = δµ(τ, σ = σπ).

Then, the variation principle implies only the equations motion (13).

Now, let us pass to the derivation of the energy-momentum four-vector corresponding to the

action . We again use the formula

δxµ = ǫµ = const. (18)

Assume the Lagrangian is invariant, ∂L
∂xµ

= 0 and δS = 0 with the conditions xµ(τ, σ) obeys

the equations of motion (13), and conditions (14) and (15). From (9) we have

Pµ =

∫ π

0

dσ

[

− ∂L

∂xµ,0
+ ∂i

(

∂L

∂xµ,0i

)]

− ∂L

∂xµ,01

∣

∣

∣

∣

σ=π

+
∂L

∂xµ,1

∣

∣

∣

∣

σ=0

, (19)
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is constant during the τ -evolution .We notice that the two last terms on the right hand side of formula

(19) cancel with the term
∫ π

0
dσ∂1(

∂L
∂µ,01

). Therefore the final formula for the energy- momentum four

-vector has form

Pµ =

∫ π

0

dσpµ; pµ =

[

− ∂L

∂xµ,0
+ ∂i

(

∂L

∂xµ,0i

)]

. (20)

where

∂1B + ∂0pµ = 0, (21)

Integrating formula (21) over σ, and taking into account boundary conditions (14) we again

obtain that

∂0pµ = 0. (22)

This is a check that our formulae (21) and (22) are correct. By a similar reasoning we obtain

a conserved angular-momentum tensor Mµν for rigid string. The only difference is that now

δxµ = ωµνxν . (23)

instead of formula (18). Here ωµν = −ωνµ are the six infinitesimal parameters of Lorentz transfor-

mations. After a partial integration, contribution of the Z-terms is canceled by each other.The final

formula forMµν has the following form.

Mµν =

∫ π

0

dσ(xµpν − xνpµ) +

∫ π

0

dσ

(

∂L

∂xµ,0i

xν,i −
∂L

∂xν,0i

xµ,i

)

, (24)

where pµ is the momentum density given by formula (20)

3. The Rigid String

For the rigid string the Lagrangian has the form

L =
√−g(−γ + α2xµ

2xµ), (25)

2xµ =
1√−g

∂

∂ui

(√−ggij ∂xµ

∂uj

)

= gij ∂2xµ

∂ui∂uj
+

1√−g

∂

∂ui

(√−ggij
) ∂x

∂uj
= (26)

=
1√−g

{

∂

∂τ

[

(ẋx′) x′µ − x′2x”√−g

]

+
∂

∂τ

[

(ẋx′)x” − ẋ′
µ − x′2x′µ

√−g

]}

,

where γ > 0 is the constant with dimension of the squared mass, α 6= 0 is the dimensionless constant

which specifies the rigidity of the string world sheet. 2 is the Laplace-Beltrami operator for the

metric tensor gij .g = det ‖ gij ‖.In the Minkowski space-time the metric with signature ηµν =

diag(+1,−1,−1,−1, ...) For α = 0 we would obtain the usual Nambu-Gato string.In the case of

Lagrangian (25) equations of motion have the form

(γ − α2xµ
2xµ)2xµ + 2α

[

2(2xµ) − gijxν
,ixµ,j2(2xν)

]

− 4αgijgkz(2xν),jx
ν
,k∇ixµ,z = 0 (27)

where ∇ax

∇ixµ,z = xν,ij

(

ηµν − gkzxν,zxµ,k

)

, (28)

Equation (27) are very complicated . They contain fourth -order partial derivatives and nonlin-

earities . For α = 0 they reduce to equations of motion for the Nambu-Gato string.

2xµ = 0. (29)
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Equations (29) are also nonlinear . However, it is a well-known fact that they can be locally

linearized by choosing so called orthonormal coordinates on the world sheet with following conditions

xẋ′ = 0, ẋ2 > 0, x′2 < 0, ẋ2 = −x′2 (30)

2xµ = 0 ⇔
(

∂2
0 − ∂2

1

)

xµ(τ, σ) = 0. (31)

The functions Bµ(τ, σ),Cµ(τ, σ)which appear in boundary conditions in the case of Lagrangian

(25) have following form

Bµ(τ, σ) =
√−g(γ − α2xµ

2xµ)g1ixµ,i + 2α
√−ggjkxλ

,ixλ,jk2xµ + eqno(3.8)

+4α
√−g2xσxσ

,ijg
1jGikxµ,k + 2α∂0

(√−gg01
2xµ

)

+ 2α∂j

(√−gg1j
2xµ

)

;

Cµ(τ, σ) = 2α
√−gg11

2xµ. (32)

The energy-momentum density pµ has the following form

Pµ =
√−gg0j(γ − α2xσ

2xσ)xµ,j + 2α∂0

(√−gg00
2xµ

)

+ (33)

+2α
√−gg0igjk

(

22xσxσ
ijxµ,k + xλ

,jkxλ,i2xµ

)

In the orthonormal coordinates this formula is simplified to

pµ = ẋµ






γ(NG)− α

∂̄2xµ∂̄2xµ
(

ẋ2

)2
+ 4α

∂̄2xσẍσ

(

ẋ2

)2






+ 2α∂0

(

1

ẋ2
∂̄2xµ

)

− 4α
(

ẋ2

) ∂̄2xσẋ′x′

µ. (34)

In the Nambu-Gato α = 0

pµ = γẋµ. (35)

Investigations of the rigid string model are not easy to carry out because equations of motion of

the classical string and the corresponding canonical structure are rather complicated.

4. Hamilton description of the open rigid string

Discussion of Hamilton formulation of dynamics of systems with reparametrization invariance,

which is a special case of local gauge invariance, is complicated by a problem of constraints. In order

to avoid this obstacle we shall discuss the Hamilton description of the rigid string in the physical

gauge, which is defined by the requirement that the evolution parameter τ is equal to the physical time

x0

x0(τ, σ) = τ. (36)

In this gauge, the independent dynamical variables are xi(t, σ), i = 1, 2, 3 t = x0 . Variations

are now replaced by

~x(τ, σ) → ~x(τ, σ) + δ~x(τ, σ), (37)

where −→x = xi. The considerations of section 2 can be repeated with the only difference that the index

µ = 0, 1, 2, 3 is now replaced by the index i = 1, 2, 3. In particular,the equations of motion (13) and

the boundary conditions have the form given by formula (14− 15) with the replacement µ → i. From

the invariance under the spatial translations

δ~x = ~ǫ = const, (38)
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S =

∫ t2

t1

dt

∫ π

0

dσL

(

~x, ~̇x, ~x′, ~̈x, ~̇x′, ~x”

)

. (39)

The result is

P0 =

∫ π

0

dσ

{

~̈x
∂L

∂−̈→x
+ ~̇x

[

∂L

∂~̇x
− ∂0

(

∂L

∂~̇x

)]

+ ~̇x
∂L

∂~̇x
− L

}

, (40)

In order to obtain this formula , the equations of motion and and the boundary conditions have

been used. Also some partial integrations over σ have been performed

In the case of Lagrangian L with second order derivatives there are two independent ”configu-

ration space-type” variables

q1a = xa, q2 = ẋi, (41)

and the corresponding canonical momenta

p1a = − ∂L

∂q2a
+

∂

∂τ

(

∂L

∂q̇2

)

+
∂

∂σ

(

∂L

∂q′
2a

)

. (42)

The Lagrangian L is regarded as a function of variables q1, q́1, q2, q̇2, q́2.The Hamilton is defined

by the formula

P2a = − ∂L

∂ ˙q2a
, (43)

where q̇2 is unique function of p2 and of the other variables obtained by solving for q̇2 . The function

q̇2 is unique because we have fixed the gauge. The equations of motion (13) are equivalent to the

following set of Hamilton equations of motion:

H̄ = −p1aq2a − p2aq̇2a − L
(

q1, q
′

1, q”1, q2, q̇2, q
′

2

)

, (44)

q̇1 = −δH

δp1

; q̇2 = −δH

δp2

, (45)

ṗ1 =
δH

δq1

; ṗ2 =
δH

δq2

, (46)

where

H̄ = H̄
(

q1, q
′

1, q”1, q2, q̇2, q
′

2

)

is Hamilton functional

H =

∫ π

0

dσH̄ =

∫ π

0

dσ

{

~̈x
∂L

∂~̈x
+ ~̇x

[

∂L

∂~̇x
− ∂0

(

∂L

∂~̈x

)

− ∂1

(

∂L

∂~̇x

)]

− L

}

, (47)

and
δH

δq1

=
∂H̄

∂q1

− ∂

∂σ

(

∂H̄

∂q′
1

)

+
∂2

∂σ2

(

∂H̄

∂q”1

)

, (48)

δH

δq2

=
∂H̄

∂q2

− ∂

∂σ

(

∂H̄

∂q′
2

)

;
δH

δp1

=
∂H̄

∂p1

;
δH

δp2

=
∂H̄

∂p2

,

are variational derivatives of the functional H. Comparing H with the energy P0 we see that

H = P0 −
∫ π

0

dσ∂1

(

~̇x
∂L

∂~̇x

)

= P0 − ~̇x
∂L

∂~̇x

∣

∣

∣

∣

σ=π

σ=0

. (49)

Thus, in the case of the open string H differs from P0.

F =

∫ π

0

dσF̄
(

q1, q
′

1, q”1, q2, q
′

2, p1, p2

)

. (50)
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Using Hamilton equations of motion (47) we may write

dF

dt
=

∫ π

0

dσ

(

∂F̄

∂q1

q̇1 +
∂F̄

∂q′
1

q̇”1 +
∂F̄

∂q2

q̇′2 +
∂F̄

∂p1

ṗ1 +
∂F̄

∂p2

ṗ2

)

= (51)

=

∫ π

0

dσ

(

δF

δq1

q̇1 +
δF

δq2

q̇2 +
δF

δp1

ṗ1 +
δF

δp2

ṗ2

)

+

+

[

∂F̄

∂q′
1

− ∂

∂σ

(

∂F̄

∂q”1

)]

q̇1

∣

∣

∣

∣

σ=π

σ=0

+
∂F

∂q”1

q̇1

∣

∣

∣

∣

σ=π

σ=0

+
∂F̄

∂q′
2

q̇2

∣

∣

∣

∣

σ=π

σ=0

(52)

Equation (50) has a rather usual implication that Hamilton H might not be a constant at the

motion. From Eq. (50) it follows that

dF

dt
= {F, H}+ ”the boundary terms” (52)

where Poisson bracket {F.H} is by definition

{F, H} =

∫ π

0

dσ

{

δF

δp1

δH

δq1

− δH

δp1

δF

δq1

+
δF

δp2

δH

δq2

− δH

δp2

δF

δq2

}

(53)

The boundary terms (the last three terms on the right hand side of formula (50)) vanish in the

case of closed string. In the case of open string they give a non-vanishing contribution even in the

case of Nambu-Gato string.

dF

dt
= ”the boundary terms”, (54)

because of boundary condition (14) which in this case reduces to ∂L

∂~á
= 0 for σ = 0, π. In the case of

Lagrangian L with second order derivatives , boundary condition (53) to the form

∂H̄

∂~x′

∣

∣

∣

∣

σ=π

σ=0

= − ∂L

∂~x′

∣

∣

∣

∣

σ=π

σ=0

= 0. (55)

In the case Nambu-Gato string the boundary terms in Eq. (53) reduce

dH

dt
= −∂0

[
∫ π

0

dσ∂1

(

~̇x
∂L

∂~̇x

)]

. (56)

The right side of equation (55) does not vanish, in general . Therefore, dH
dt 6= 0. From equation

(55) it follows that

H +

∫ π

0

dσ∂1

(

~̇x
∂L

∂~̇x

)

, (57)

is constant during the motion, but this just the energy P0 is given by formula (39). In general, the

boundary terms will also be present in other gauges, because their appearance is due to the facts that

the Lagrangian contains second order derivatives and range of the parameter σ is finite.However, in

some particular cases the boundary terms can vanish. For example , in papers a gauge is used which

is physical, i. e x0(τ, σ) = τ , and orthogonal, i. e.
−→̇
x
−→́
x = 0,
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5. Conclusion

The equations of motion, of the boundary conditions and of the energy - momentum for the

classical rigid string are reconserved. Certain consequences of the equations of motion are presented.

We also point out that in Hamilton description of the rigid string the usual time evolution equation

Ḟ = {F, H} is modified by some boundary terms.
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