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 Abstract. Analytical expressions for the Morse potential parameters of diamond crystals have 

been derived. They contain the energy of sublimation, the compressibility and the lattice constant. 

Numerical calculations have been carried out for Si and Sn, and the results reflect fundamental 

properties of this potential. The obtained Morse potential parameters have been used for 

calculation of the anharmonic correlated effective potentials of these crystals in XAFS theory 

showing clearly anharmonic effects .  

1. Introduction 

Interatomic anharmonic potential, especially Morse potential, has been studied widely [1-12]. 

The parameters of this potential can be extracted from the XAFS (X-ray Absorption Fine Structure) 

[11,12]. They are also used to calculate thermodynamic parameters included in these spectra [4-10]. 

This potential is successfully applied to calculating the quantities involving atomic interaction, 

especially, the anharmonic effects contained in XAFS [5-10] which influence on the physical 

information taken from these spectra. They are also contained in the expressions of equation of state 

[1]. Therefore, calculation of the Morse potential is very actually desired, especially in XAFS theory. 

The calculation of Morse potential has been carried out for fcc, bcc [1,22 ] and hcp [17,22] crystals. 

The purpose of this work is to develop a method for calculation of Morse potential parameters 

of Diamond, an interesting crystal structure. Analytical expressions for the parameters of this potential 

have been derived. They contain the energy of sublimation, the compressibility and the lattice constant 

which are known already, for example see [13,18,21]. The obtained results are applied to calculating 

the anharmonic correlated effective potential, contained in the XAFS spectra [4-10,14]. Numerical 

calculations have been carried out for volume per atom, tructural parameters and Morse potential 

parameters of Diamond crystals Si and Sn. The obtained Morse potential parameters satisfy all 

fundamental properties of this potential [19] and have been applied to calculating anharmonic 

correlated effective potentials of these crystals in XAFS theory. 

______ 
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2. Procedure for calculation of Morse potential of Diamond crystals 

The potential energy ( )ijrϕ  of two atoms i and j separated by a distance ijr  is given in terms of 

the Morse function by 

 ( )
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where D,α  are constants with dimensions of reciprocal distance and energy, respectively; or  is the 

equilibrium distance of the two atoms. Since ( ) ,or D Dϕ = − is the disociation energy. 

In order to obtain the potential energy of the whole crystal whose atoms are at rest, it is 

necessary to sum Eq. (1) over the entire crystal. This is most easily done by choosing one atom 

in the lattice as an orgin, calculating its interaction with all the others in the crystal, and then 

multiplying by 2/N , where N is the total atomic number in the crystal. Thus the total energy Φ  is 

given by 
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Here jr  is the distance from the origin to the jth atom. It is convenient to define the following 

quantities 
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where jjj lnm ,,  are position coordinates of any atom in the lattice. Applying Eq. (3) to Eq. (2), the 

energy can be rewritten as  

 ( ) 2 2
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The first and second derivatives of the energy of Eq. (4) with respect to a  are given by 
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At absolute zero T = 0, oa  is value of a  for which the lattice is in equilibrium, then ( )oaΦ  gives the 

energy of cohesion, [ ]
0

/ 0
a

d daΦ = , and 
0

2 2/
a

d da Φ  is related to the compressibility [1]. That is, 

 ( ) ( )0 0 0a U aΦ = , (7) 

where ( )00 aU  is the energy of sublimation at zero pressure and temperature, i., e., 
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and the compressibility is given by [1] 
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where 0V  is the volume at T = 0, and 00K  is compressibility at zero temperature and pressure. The 

volume per atom NVv /=  is related to the lattice constant a  by the relation [1] 

 3/ caV N = .  (10) 

Substituting Eq. (10) in Eq. (9) the compressibility is expressed by 
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  Using Eq. (5) to solve Eq. (8) we obtain 
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From Eqs. (4, 6, 7, 11) we derive the relation 
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  Solving the system of Eqs. (12, 13) we obtain ,α β . Substituting the obtained results into the 

second of Eq. (3) we derive 0r . Using the obtained ,α β  and Eq. (4) to solve Eq. (7) we obtain L. 

From this L and the first of Eq. (3) we obtain D. The obtained Morse potential parameters α,D  

depend on the compressibility 00K , the energy of sublimation 0U  and the lattice constant a . These 

values of about all crystals are known already [13,16,18,21]. 

3. Application to calculation of anharmonic correlated effective potential in XAFS 

Figure 1 shows Fourier transform magnitudes of XAFS of Sn (Diamond), measured at 77K and 

300K at HASYLAB (DESY, Germany) [20]. They are different at these temperatures by the shift of 

the curves showing anharmonic effects in XAFS. For describing these effects an anharmonic XAFS 

theory is necessary. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Fourier transform magnitudes of  XAFS of Sn at 77K and 300K. 
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The expression for the K-edge anharmonic XAFS function [10] is described by 
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where )(kF  is the real atomic backscattering amplitude, Φ  is net phase shift, k  and λ  are the wave 

number and the mean free path of the photoelectron, respectively, and σ (n)
 (n = 1,2,3, …) are the 

cumulants. The expression for the cumulants in XAFS theory is derived based on the anharmonic 

correlated Einstein model [9] which is considered, at present, as “the best theoretical framework with 

which the experimentalist can relate force constants to temperature dependent XAFS” [15]. According 

to this theory the effective interaction Einstein potential of the system is given by 
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Here effk is effective force constant, and 3k  the cubic parameter giving an assymmetry in the 

pair distribution function, r is bondlength and 0r  is its equilibrium value. The correlated Einstein 

model may be defined as a oscillation of a pair of atoms with masses 1M  and 2M  (e.g., absorber and 

backscatterer) in a given system. Their oscillation is influenced by their neighbors given by the last 

term in the left-hand side of Eq. (16), where the sum i  is over absorber ( 1=i ) and backscatterer 

( 2=i ), and the sum j  is over all their near neighbors, excluding the absorber and backsctterer 

themselves. The latter contributions are described by the term ( )xV . 

Applying the Morse potential of Eq. (1) in the approximation for weak anharmonicity to the  

XAFS theory by the expansion 
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so that the anharmonic effective potential Eq. (16) is transformed as  
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with the effective local force constant and cubic parameter 
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and structural parameters 
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4. Numerical results and discussion 

To calculate the above equations to obtain the Morse potential parameters, we have to calculate 

the parameter c in Eq. (10). The space lattice of diamond is fcc. The primitive basis has two identical 

atoms at 000, 
4

1

4

1

4

1
associated with each point of the fcc lattice. Thus the conventional unit cube 

contains eight atoms, so that we obtain the value c = 1/8 for this tructure. 
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Using the theory derived in the previous section and the calculated parameter c, as well as the 

energy of sublimation, the compressibility and the lattice constant from [13,16,18,21] we calculated 

Morse potential parameter 0,, rD α by our established computing programs and the results are included 

in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Nearest neighbors of absorber (A) and backscatterer (S) in XAFS of diamond crystal. 

Table 1. Calculated Morse potential parameters for Diamond crystals Si and Sn 

 
Crystal D(eV) α (Å-1) or (Å) 

Si 0.9956 1.3621 2.8439 

Sn 1.3189 2.0504 2.8813 

 Based on the coordinates of neighbors and central atom (Fig. 2) presented in Table 2 we 

Table 2. Coordinates of neighbors of a central atom in diamond structure 

   
Atomic number x y z cos(R01.Rij) 

1 -1/4 -1/4 -1/4  

2 1/4 1/4 -1/4 -1/3 
3 1/4 -1/4 1/4 -1/3 

4 -1/4 1/4 1/4 -1/3 

calculated the structural paremeters 
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  Hence, for diamond the anharmonic correlated effective potential from Eq. (18) is resulted as 

 ( ) 2 2 3 37 35

6 36
effV x D x D xα α≅ −  ,  (22) 

   ( ) 2 3 2 3 37 105 35

6 36 36
effV y D a y D yα α α

 
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.   (23) 

Figure 3 shows the calculated Morse potentials of Si and Sn. They satisfy all properties of the Morse 

potential  [19], i. e., it describes repulsive force in short distance when atoms approach each other 

obeying Pauli exclusion principle, and describes attractive force in long distance when atoms go far 
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from each other. The reason of this 

attraction is that the atoms have diffusion 

moments which attract each other in long 

distance. Figure 4 illustrates the 

calculated anharmonic and harmonic 

effective potentials for Si and Sn. They 

show strong asymmetry of these 

potentials due to including anharmonic 

contributions in atomic vibrations of these 

diamond crystals. 

 

 

 

 

Fig. 3. Calculated Morse potentials for Si and Sn. 

 

Fig. 4. Calculated anharmonic and harmonic effective potentials for Diamond  

crystals Si (a) and Sn (b) showing strong anharmonic shifting. 

5. Conclusions 

A new procedure for calculation of Morse potential parameters for Diamond crystals has been 

developed and the obtained results are applied to calculation of anharmonic and harmonic potential in 

the XAFS theory. The derived expressions have been programed for the computation of the considered 

physical quantities.  

The derived expressions for Morse potential parameters contain the energy of sublimation, the 

compressibility and the lattice constant of Diamond crystals which are available in literatures. 

The good satisfying of the calculated Morse potential with its fundamental properties, as well 

as, the good description of the effective potentials and the asymmetry of this potential due to 

anharmonicity show the efficiency and reliability of the present procedure in computation of the 
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atomic interaction potential parameters as the Morse potential which are important for calculation and 

analysis of physical effects in XAFS technique and in solving the problems involving any type of 

atomic interaction in the Diamond crystals. 
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