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Oscilation and Convergence for a Neutral Difference Equation
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Abstract. The oscillation and convergence of the solutions of neutral difference equation

∆(xn + δxn−τ ) +

r
∑

i=1

αi(n)F (xn−mi
) = 0, n = 0, 1, · · ·

are investigated, where mi ∈ N0, ∀i = 1, r and F is a function mapping R to R.

Keyworks: Neutral difference equation, oscillation, nonoscillation, convergence.

1. Introduction

It is well-known that difference equation

∆(xn + δxn−τ ) + α(n)xn−σ = 0, (1)

where n ∈ N, the operator ∆ is defined as ∆xn = xn+1 − xn, the function α(n) is defined on N, δ

is a constant, τ is a positive integer and σ is a nonnegative integer, was first considered by Brayton

and Willoughby from the numerical point of view (see [1]). In recent years, the asymptotic behavior

of solutions of this equation has been studied extensively (see [2-7]). In [4, 6, 7], the oscillation of

solutions of the difference equation (1) was discussed.

Motivated by the work above, in this paper, we aim to study the oscillation and convergence of

solutions of neutral difference equation

∆(xn + δxn−τ ) +

r
∑

i=1

αi(n)F (xn−mi
) = 0, (2)

for n ∈ N, n > a for some a ∈ N, where r, m1, m2, · · · , mr are fixed positive integers, the functions

αi(n) are defined on N and the function F is defined on R.

Put A = max{τ, m1, · · · , mr}. Then, by a solution of (2) we mean a function which is defined

for n > −A and sastisfies the equation (2) for n ∈ N. Clearly, if

xn = an, n = −A,−A + 1, · · · ,−1, 0

are given, then (2) has a unique solution, and it can be constructed recursively.

A nontrivial solution {xn}n>a of (2) is called oscillatory if for any n1 > a there exists

n2 > n1 such that xn2
xn2+1 6 0. The difference equation (2) is called oscillatory if all its solutions

are oscillatory. Otherwise, it is called nonoscillatory.
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2. Main results

2.1. The Oscillation

Consider neutral difference equation

∆(xn + δxn−τ ) +
r
∑

i=1

αi(n)xn−mi
= 0, (3)

for n ∈ N, n > a for some a ∈ N, where r, m1, m2, · · · , mr are fixed positive integers and the

functions αi(n) are defined on N. It is clear that equation (3) is a particular case of (2). We shall

establish some sufficient criterias for the oscillation of solutions of the difference equation (3). First

of all we have

Theorem 1. Assume that
(m̃ + 1)m̃+1

m̃m̃

r
∑

i=1

lim inf
n→∞

αi(n) > 1, (4)

where δ = 0, αi(n) > 0, n ∈ N, 1 6 i 6 r and m̃ = min
16i6r

mi. Then, (3) is oscillatory.

Proof. We first prove that the inequality

∆xn +
r
∑

i=1

αi(n)xn−mi
6 0, n ∈ N (5)

has no eventually positive solution. Assume, for the sake of contradiction, that (5) has a solution {xn}

with xn > 0 for all n > n1, n1 ∈ N. Setting vn = xn

xn+1
and dividing this inequality by xn, we obtain

1

vn
6 1 −

r
∑

i=1

αi(n)

mi
∏

ℓ=1

vn−ℓ, (6)

where n > n1 + m, m = max
16i6r

mi.

Clearly, {xn} is nonincreasing with n > n1 + m, and so vn > 1 for all n > n1 + m. From (4)

and (6) we see that {vn} is a above bounded sequence. Putting lim inf
n→∞

vn = β, we get

lim sup
n→∞

1

vn
=

1

β
6 1− lim inf

n→∞

r
∑

i=1

αi(n)

mi
∏

ℓ=1

vn−ℓ,

or

1

β
6 1−

r
∑

i=1

lim inf
n→∞

αi(n) · βmi . (7)

Since

βmi > βm̃, ∀i = 1, r,

we have

lim inf
n→∞

αi(n)βmi > lim inf
n→∞

αi(n)βm̃, ∀i = 1, r

and

1 −

r
∑

i=1

lim inf
n→∞

αi(n)βmi 6 1 −

r
∑

i=1

lim inf
n→∞

αi(n)βm̃.
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From (7) we have

lim inf
n→∞

r
∑

i=1

αi(n) 6
β − 1

βm̃+1
.

But
β − 1

βm̃+1
6

m̃m̃

(m̃ + 1)m̃+1
,

so
(m̃ + 1)m̃+1

m̃m̃

r
∑

i=1

lim inf
n→∞

αi(n) 6 1,

which contradicts condition (4). Hence, (5) has no eventually positive solution.

Similarly, we can prove that the inequality

∆xn +

r
∑

i=1

αi(n)xn−mi
> 0, n ∈ N

has no eventually negative solution. So, the proof is complete.

Corollary. Assume that

r
[

r
∏

i=1

lim inf
n→∞

αi(n)
]

1

r >
m̂m̂

(m̂ + 1)m̂+1
, (8)

where δ = 0, αi(n) > 0, n ∈ N, 1 6 i 6 r and m̂ = 1
r

∑r
i=1 mi. Then, (3) is oscillatory.

Proof. We will prove that the inequality (5) has no eventually positive solution. Assume, for the sake
of contradiction, that (5) has a solution {xn} with xn > 0 for all n > n1, n1 ∈ N. Using arithmetic

and geometric mean inequality, we obtain

r
∑

i=1

lim inf
n→∞

αi(n) · βmi > r

(

r
∏

i=1

lim inf
n→∞

αi(n)βmi

)
1

r

,

which is the same as

r
∑

i=1

lim inf
n→∞

αi(n) · βmi > r

(

r
∏

i=1

lim inf
n→∞

αi(n)

)
1

r

βm̂.

This yields

1 −

r
∑

i=1

lim inf
n→∞

αi(n) · βmi 6 1 − r

(

r
∏

i=1

lim inf
n→∞

αi(n)

)
1

r

βm̂.

By using the inequality (7) we have

r
[

r
∏

i=1

(lim inf
n→∞

αi(n))
]

1

r 6
m̂m̂

(m̂ + 1)m̂+1
,

which contradicts condition (8). Hence, (5) has no eventually positive solution.

Next, we consider the equation (3) in case δ 6= 0. We have the following Lemma.

Lemma 1. Let αi(n) > 0 for all n ∈ N and let {xn} be an eventually positive solution of (3). Put
zn = xn + δxn−τ , we have
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• (a) If −1 < δ < 0, then zn > 0 and ∆zn < 0 eventually.
• (b) If δ < −1 and

∑

∞

ℓ=1[
∑r

i=1 αi(ℓ)] = ∞, then zn < 0 and ∆zn 6 0 eventually.

Proof. (a) Since αi(n) 6≡ 0, we have

∆zn = −

r
∑

i=1

αi(n)xn−mi
< 0

eventually, so zn cannot be eventually identically zero. If zn < 0 eventually, then

zn 6 zN < 0, ∀n > N ∈ N.

Since −1 < δ < 0, we get

zn = xn + δxn−τ > xn − xn−τ ,

which implies that

xn < zn + xn−τ 6 zN + xn−τ .

Therefore,

xN+τn < zN + xN+τn−τ = zN + xN+τ (n−1) < · · · < nzN + xN .

Taking n → ∞ in the above inequality, we have xN+τn < 0, which is a contradiction to xn > 0.

(b) We have

∆zn = −

r
∑

i=1

αi(n)xn−mi
< 0,

for n sufficient large. We shall prove that zn < 0, eventually. Assume, for the sake of a contradiction,

that

zn = xn + δxn−τ > 0, n > N,

i.e.

xn > −δxn−τ , n > N,

which implies that

0 < xN−τ 6

(

−
1

δ

)

xN 6 · · · 6
(

−
1

δ

)j
xN+(j−1)τ , j = 1, 2, · · · .

On letting j → ∞ in the above inequality, we get xn → ∞ as n → ∞. But

∆zn = −

r
∑

i=1

αi(n)xn−mi
6 −M

r
∑

i=1

αi(n), (9)

for n sufficient large, where M > 0. Summing (9) from N to n, we obtain

zn+1 − zN 6 −M

n
∑

ℓ=N

[

r
∑

i=1

αi(ℓ)],

which implies that zn → −∞ as n → ∞. This contradicts the hypothesis that zn > 0, n > N .

Theorem 2. Suppose that

1

1 + δ

(m̃ + 1)m̃+1

m̃m̃

r
∑

i=1

lim inf
n→∞

αi(n) > 1, (10)
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where −1 < δ < 0, m̃ = min
16i6r

mi and αi(n) > 0, αi(n) > αi(n − τ), for n sufficient large,

1 6 i 6 r. Then, (3) is oscillatory.

Proof. Assume the contrary and let {xn} be an eventually positive solution of (3). Let zn = xn+δxn−τ

and wn = zn + δzn−τ . Then, by the case (a) of Lemma 1, zn > 0, ∆zn < 0 and wn > 0. We have

∆wn = ∆zn + δ∆zn−τ

= −

r
∑

i=1

αi(n)xn−mi
− δ

r
∑

i=1

αi(n − τ)xn−τ−mi
,

6 −

r
∑

i=1

αi(n)xn−mi
− δ

r
∑

i=1

αi(n)xn−τ−mi
,

∆wn 6 −

r
∑

i=1

αi(n)(xn−mi
+ δxn−τ−mi

),

∆wn 6 −

r
∑

i=1

αi(n)zn−mi
6 0.

Putting lim
n→∞

zn = β, we have β > 0 and

lim
n→∞

wn = β + δβ = (1 + δ)β > 0.

Therefore, wn > 0 for n sufficient large. On the other hand,

wn = zn + δzn−τ 6 (1 + δ)zn,

which implies that

zn−mi
>

wn−mi

1 + δ
.

Hence, we obtain

∆wn 6 −

r
∑

i=1

αi(n)zn−mi
6 −

1

1 + δ

r
∑

i=1

αi(n)wn−mi
,

or

∆wn +
1

1 + δ

r
∑

i=1

αi(n)wn−mi
6 0. (11)

By Theorem 1 and in view of condition (10), the inequality (11) has no eventually positive

solution, which is a contradiction.

Lemma 2. Assume that −1 < δ < 0 and τ > m̃ + 1, where m̃ = min
16i6r

mi. Then, the maximum

value of f(β) = β−1
βm̃+2 (1 + δβτ ) on [1,∞) is f(β∗), in which β∗ ∈ (1, (−δ)−1/τ) is a unique real

solution of the equation

1 + δβτ + (β − 1)[δτβτ − (m̃ + 1)(1 + δβτ )] = 0.

Proof. The equation f ′(β) = 0 is equivalent to

1 + δβτ + (β − 1)[δτβτ − (m̃ + 1)(1 + δβτ )] = 0. (12)
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Put

ϕ(β) = 1 + δβτ + (β − 1)[δτβτ − (m̃ + 1)(1 + δβτ )].

It is easy to check that

ϕ′(β) = δτβτ−1 + δβτ [τ − (m̃ + 1)] − (m̃ + 1) + (β − 1)δτβτ−1[τ − (m̃ + 1)].

Since τ > m̃ + 1, we get ϕ′(β) < 0. On the other hand, we have ϕ(1) = 1 + δ > 0 and

lim
β→+∞

ϕ(β) = lim
β→+∞

{1 + δβτ + (β − 1)[δβτ [τ − (m̃ + 1)] − (m̃ + 1)]} = −∞.

It implies that, ϕ is a decreasing function, starting from a positive value at β = 1, and hence (12)

has a unique real solution β∗ ∈ [1,∞). Further, it is easy to see that β∗ ∈ (1, (−δ)−1/τ) and

f(β) > 0, ∀β ∈ (1, (−δ)−1/τ), which implies that f(β∗) is the maximum value of f(β) on [1,∞).

The proof is complete

Theorem 3. Assume that −1 < δ < 0; τ > m̃ + 1; αi(n) > 0, αi(n) > αi(n − τ),
for n sufficient large, 1 6 i 6 r, m̃ = min

16i6r
mi and

r
∑

i=1

lim inf
n→∞

αi(n) >
β∗ − 1

β∗m̃+2
(1 + δβ∗τ−1), (13)

where β∗ ∈ [1,∞) is defined as in Lemma 2. Then, (3) is oscillatory.

Proof. Suppose to the contrary, and let {xn} be an eventually positive solution of (3). By the case (a)

of Lemma 1, we get zn > 0, ∆zn < 0 eventually. On the other hand,

∆wn = ∆(zn + δzn−τ ) 6 −

r
∑

i=1

αi(n)zn−mi
6 0. (14)

Putting γn = zn−1

zn
, we have γn > 1 for n sufficient large. Dividing (14) by zn, we get

1

γn+1
6 1 + δ

[zn−τ

zn
−

zn−τ+1

zn

]

−
r
∑

i=1

αi(n)
zn−mi

zn
,

or

1

γn+1
6 1 + δ

[

γn−τ+1 · · ·γn − γn−τ+2 · · ·γn

]

−
r
∑

i=1

αi(n)

mi
∏

ℓ=0

γn−ℓ. (15)

Setting lim inf
n→∞

γn = β, we get β > 1. It is clear that β is finite. From (15) we have

lim sup
n→∞

1

γn+1
=

1

β
6 1 + δβτ−1(β − 1)−

r
∑

i=1

lim inf
n→∞

αi(n) · βmi ,

r
∑

i=1

lim inf
n→∞

αi(n) · βmi+1
6 1 + δβτ−1(β − 1)−

1

β
= (β − 1)[

1

β
+ δβτ−1],

r
∑

i=1

lim inf
n→∞

αi(n) 6
β − 1

βm̃+2
(1 + δβτ ) = f(β).
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By Lemma 2, we have

r
∑

i=1

lim inf
n→∞

αi(n) 6 f(β∗) =
β∗ − 1

β∗m̃+2
(1 + δβ∗τ ),

which contradicts condition (13). Hence, (3) has no eventually positive solution.

Theorem 4. Suppose that

−
1

δ + 1

(τ − m∗)
τ−m∗

(τ − m∗ − 1)τ−m∗−1

r
∑

i=1

lim inf
n→∞

αi(n) > 1, (16)

where αi(n) 6 αi(n − τ) for n sufficient large; δ < −1, m∗ = max
16i6r

mi, τ > m∗ + 1 and
∑

∞

ℓ=1[
∑r

i=1 αi(ℓ)] = ∞. Then, (3) is oscillatory.

Proof. Assume the contrary. Without loss of generality, let {xn} be an eventually positive solution of

(3). By the case (b) of Lemma 1, we have zn < 0 and ∆zn 6 0. Putting

wn = zn + δzn−τ ,

we have

wn = zn + δzn−τ 6 (1 + δ)zn−τ ,

which is the same as

zn−τ 6
1

δ + 1
wn.

Therefore, it follows that

∆wn = ∆zn + δ∆zn−τ

= −

r
∑

i=1

αi(n)xn−mi
− δ

r
∑

i=1

αi(n − τ)xn−τ−mi
,

> −

r
∑

i=1

αi(n)xn−mi
− δ

r
∑

i=1

αi(n)xn−τ−mi
,

∆wn > −

r
∑

i=1

αi(n)(xn−mi
+ δxn−τ−mi

),

∆wn > −

r
∑

i=1

αi(n)zn−mi
> 0,

so we get

0 6 ∆wn +

r
∑

i=1

αi(n)zn−mi
6 ∆wn +

1

δ + 1

r
∑

i=1

αi(n)wn−mi+τ .

Setting γn = wn+1

wn
, we obtain

γn > 1−
1

δ + 1

r
∑

i=1

αi(n)

τ−mi
∏

ℓ=1

γn−mi+τ−ℓ. (17)
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Putting β = lim inf
n→∞

γn, we have β > 1. Taking lower limit on both sides of (17), we obtain

β > 1 −
1

δ + 1

r
∑

i=1

lim inf
n→∞

αi(n) · βτ−mi ,

or

β − 1 > −
1

δ + 1

r
∑

i=1

lim inf
n→∞

αi(n) · βτ−mi . (18)

Since

βτ−mi > βτ−m∗ , ∀i = 1, r,

−
1

δ + 1
lim inf
n→∞

αi(n)βτ−mi > −
1

δ + 1
lim inf
n→∞

αi(n)βτ−m∗ , ∀i = 1, r.

From (18) we get

−
1

δ + 1

r
∑

i=1

lim inf
n→∞

αi(n) 6
β − 1

βτ−m∗

.

But
β − 1

βτ−m∗

6
(τ − m∗ − 1)τ−m∗−1

(τ − m∗)τ−m∗

,

so

−
1

δ + 1

(τ − m∗)
τ−m∗

(τ − m∗ − 1)τ−m∗−1

r
∑

i=1

lim inf
n→∞

αi(n) 6 1,

which contradicts condition (16). Hence, (3) has no eventually positive solution.

Theorem 5. Suppose that

−
1

δ

(τ − m∗)
τ−m∗

(τ − m∗ − 1)τ−m∗−1

r
∑

i=1

lim inf
n→∞

αi(n) > 1, (19)

where δ < −1, m∗ = max
16i6r

mi, τ > m∗ + 1 and
∑

∞

ℓ=1[
∑r

i=1 αi(ℓ)] = ∞. Then, (3) is oscillatory.

Proof. Suppose to the contrary, and let {xn} be an eventually positive solution of (3). Put zn =

xn + δxn−τ . By the case (b) of Lemma 1, we obtain zn < 0 and ∆zn 6 0. On the other hand, we

have zn > δxn−τ or xn−τ > 1
δ zn, which implies that xn−mi

> 1
δ zn+τ−mi

. Hence,

∆zn 6 −
1

δ

r
∑

i=1

αi(n)zn+τ−mi
. (20)

Setting vn =
zn+1

zn
and dividing (20) by zn, we obtain

vn > 1 −
1

δ

r
∑

i=1

αi(n)
zn+τ−mi

zn
,

or

vn > 1 −
1

δ

r
∑

i=1

αi(n)

τ−mi−1
∏

ℓ=0

zn+τ−mi−ℓ

zn+τ−mi−ℓ−1
. (21)
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Taking lower limit on both sides of (21) and putting β = lim inf
n→∞

vn, we have β > 1 and

β − 1 > −
1

δ

r
∑

i=1

lim inf
n→∞

αi(n) · βτ−mi .

We can prove

−
1

δ

(τ − m∗)
τ−m∗

(τ − m∗ − 1)τ−m∗−1

r
∑

i=1

lim inf
n→∞

αi(n) 6 1

similarly as the proof of Theorem 4, which contradicts condition (19). Hence, (3) has no eventually

positive solution.

2.2. The Convergence

We give conditions implying that every nonoscillatory solution is convergent. To begin with,

we have

Lemma 3. Let {xn} be a nonoscillatory solution of (2). Put zn = xn + δxn−τ .

• (a) If {xn} is eventually positive (negative), then {zn} is eventually nonincreasing (nonde-
creasing).

• (b) If {xn} is eventually positive (negative) and there exists a constant γ such that

−1 < γ 6 δ, (22)

then eventually zn > 0 (zn < 0).

Proof. Let {xn} be an eventually positive solution of (2). The case {xn} is an eventually negative

solution of (2) can be considered similarly.

(a) We have ∆zn = −
r
∑

i=1
αi(n)F (xn−mi

) 6 0 for all large n. Thus, {zn} is eventually

nonincreasing.

(b) Suppose the conclusion does not hold, then since by (a) {zn} is nonincreasing, it follows

that eventually either zn ≡ 0 or zn < 0. Now zn ≡ 0 implies that ∆zn = −
r
∑

i=1
αi(n)F (xn−mi

) ≡ 0,

but this contradicts the fact that αi(n) 6≡ 0 for infinitely many n. If zn < 0, then xn < −δxn−τ so

δ < 0. From (22) it follows that −1 < γ < 0 and xn < −γxn−τ . Thus, by induction, we obtain

xn+jτ 6 (−γ)jxn for all positive integers j. Hence, xn → 0 as n → ∞. It implies that {zn} decreases

to zero as n → ∞. This contradicts the fact that zn < 0.

Theorem 6. Assume that
∞
∑

ℓ=1

r
∑

i=1

αi(ℓ) = ∞, (23)

and there exists a constant η such that

−1 < η 6 δ 6 0. (24)

Suppose further that, if |x| > c then |F (x)| > c1 where c and c1 are positive constants. Then, every
nonoscillatory solution of (2) tends to 0 as n → ∞.
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Proof. Let {xn} be an eventually positive solution of (2), say xn > 0, xn−τ > 0 and xn−mi
> 0 for

n > n0 ∈ N. Put zn = xn+δxn−τ . We first prove that zn → 0 as n → ∞. Note that (24) implies (22)

with γ replace by η. By Lemma 3 we have {zn} is eventually positive and nonincreasing. Therefore,

there exists lim
n→∞

zn. Put lim
n→∞

zn = β. Now, suppose that β > 0. By (24), we have zn 6 xn. Thus,

there exists an integer n1 > n0 ∈ N such that

β 6 zn−mi
6 xn−mi

, ∀n > n1, i = 1, · · · , r.

Hence,

∆zn = −

r
∑

i=1

αi(n)F (xn−mi
) 6 −M

r
∑

i=1

αi(n), ∀n > n1

for some positive constant M . Summing the last inequality, we obtain

zn 6 zn1
− M

n−1
∑

ℓ=n1

r
∑

i=1

αi(ℓ),

which as n → ∞, in view of (23), implies that zn → −∞. This is a contradiction.

Since lim
n→∞

zn = 0, there exists a positive constant A such that 0 < zn 6 A and so, by (24) we

have

xn 6 −ηxn−τ + A. (25)

Assume that {xn} is not bounded. Then, there exists a subsequence {nk} of N, so that lim
k→∞

xnk
= ∞

and xnk
= max

n06j6nk

xj, k = 1, 2, · · · . From (25), for k sufficiently large, we get

xnk
6 −ηxnk

+ A

and so

(1 + η)xnk
6 A,

which as k → ∞ leads to a contradiction.

Now suppose that lim sup
n→∞

xn = α > 0. Then, there exists a subsequence {nk} of N, with n1

large enough so that xn > 0 for n > n1 − τ and xnk
→ α as k → ∞. Then, from (24), we have

znk
> xnk

+ ηxnk−τ

and so

xnk−τ > −
1

η
(xnk

− znk
).

As k → ∞, we obtain

α > lim
k→∞

xnk−τ > −
α

η
.

Since −η ∈ (0, 1), it follows that α = 0, i.e. xn → 0 as n → ∞. The arguments when {xn} is an

eventually negative solution of (2) is similar.

Theorem 7. Suppose there exists positive constants M , αi, i = 1, 2, · · · , r such that

αi(n) > αi, i = 1, 2, · · · , r, ∀n ∈ N, (26)

|F (x)| > M |x|, ∀x ∈ R, (27)

δ > 0. (28)
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Then, every nonoscillatory solution of (2) tends to 0 as n → ∞.

Proof. Let {xn} be an eventually positive solution of (2), say xn > 0, xn−τ > 0 and xn−mi
> 0 for

n > n0 ∈ N. By Lemma 3, {zn} is eventually positive and nonincreasing, so there exists lim
n→∞

zn.

Put lim
n→∞

zn = β. Summing the equation (2) from n to ∞ for n > n0, we obtain

zn = β +

∞
∑

ℓ=n

r
∑

i=1

αi(ℓ)F (xℓ−mi
), n > n0.

Now by (26) and (27), we get

αM

∞
∑

ℓ=n

r
∑

i=1

αi(ℓ)xℓ−mi
6

∞
∑

ℓ=n

r
∑

i=1

αi(ℓ)F (xℓ−mi
) 6 zn − β < ∞,

which implies that xn → 0 as n → ∞. The proof is similar when {xn} is eventually negative.
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