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Abstract. This paper will present applications of the Proper Transformations based on both cross 

spectral matrix and covariance matrix branches to analysis and identification of multi-variate 

random pressure fields. The random pressure fields are determined due to the physical 

measurements on some typical rectangular models in the wind tunnel tests. The significant roles of 

the first covariance mode associated with the first principal coordinates as well as of the first 

spectral eigenvalue and associated spectral mode are clarified in reconstructing the random 

pressure fields and identifying the hidden physical phenomena inside this pressure fields.  
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1. Introduction 

Aerodynamic phenomena of structures due to the atmospheric wind flows are generated by spatial 

distribution and correlation of random fluctuating pressure field on surface of structural section. The 

fluctuating pressure field can be represented as spatially-correlated multi-variate random processes. 

Understanding and knowledge of the random pressure field and its distribution is possible to interpret 

mechanisms of excitations, identification and response of aerodynamic phenomena happening on 

structure. Due to the nature of random field, however, the fluctuating pressure field is considered as 

superposition from some causes and excitation of dominant physical phenomena. It is logical thinking 

to decompose the total pressure field by sums of independently partial pressure fields, which can be 

related to a particular mechanism of excitation and certain physical phenomena. 

The Proper Orthogonal Decomposition (POD) was developed by Loeve 1945 and Karhunen 1946, 

thus also known as the Karhunen-Loeve decomposition, was firstly applied for analyzing random 

fields by Lumley 1970 [1], Berkooz et al. 1993 [2] as a stochastic decomposition to decouple multi-

variate random turbulent fields. The POD also has been widely used for many fields such as analysis, 

simulation of random fields (including the random pressure field), numerical analysis, dynamic system 
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identification, dynamic response and so on. Several literatures presented the POD’s application to 

decompose the spatially-correlated and multi-variate random pressure fields into uncorrelated random 

processes and basic orthogonal vectors (also called as POD modes or shape-functions). The POD has 

been branched by either covariance matrix-based or spectral matrix-based proper orthogonal 

decompositions and associated proper transformations, which depend on how to build up a basic 

matrix from either zero-time-lag covariance or cross spectral matrices of the multi-variate random 

processes.  

Up to now, analyses of the random pressure fields almost have based on the covariance matrix-

branched POD due to its straightforward in computation and interpretation. Some authors used the 

POD to analyze random pressure field and to find out relation between POD modes and physical 

phenomena (eg., [3-8]). Bienkiewicz et al. 1995 [3] used the POD analysis of mean and fluctuating 

pressure fields around low-rise building directly measured due to turbulent flows. A linkage between 

pattern of the pressure distribution and POD modes, especially first two modes was discussed and 

interpreted, in which the 1
st 

mode was compatible to the pattern of the fluctuating pressure distribution, 

whereas the 2
nd

 mode similar to the mean pressure pattern. Holmes et al. 1997 [4], however, reviewed 

that that no consistent linkages between physical phenomena and POD mode due to series of physical 

measurements and POD analyses of pressure fields in low-rise buildings. Effect of pressure tap 

positions on the same measured pressure area (uniform and non-uniform arrangements) on POD 

modes studied by Jeong et al. 2000 [5], by which POD modes observed differently in two cases. 

Kikuchi et al. 1997 [6] applied the POD to pressure field of tall buildings, then fluctuating pressure 

field was reconstructed due to only few dominant POD modes, used to estimate aerodynamic forces 

and corresponding responses. Tamura et al. 1997&1999 [7-8] indicated distortion and wrong 

interpretation of POD modes due to presence of mean pressure data in the analyzed pressure field. It is 

argued that the POD is appropriate tool to reveal physical phenomena on from experimental data 

where correspondence between the POD modes and physical causes from the fluctuating pressure 

field. However, some others discussed that interpretation from POD modes is aprioristic and arbitrary 

based from previous knowledge of system behavior and response. Application to the pressure field 

analyses based on spectral matrix-branched POD is rare due to its troublesome. Recently, De Grenet 

and Ricciardelli 2004 [9] pioneered in using the spectral matrix-based POD to study the pressure field 

on squared cylinders, however, it has troublesome and difficulties in interpreting theses results.    

In this paper, the POD based spectral and covariance matrices of the random field will be 

presented. Both covariance-based and spectral-based POD modes of the wind-induced fluctuating 

pressure field have been analyzed to find out possible relationships between the POD modes and 

physical phenomena, characteristics of bluff body flows as well. Surface pressure field has been 

determined through physical measurements on some typical rectangular models with side ratios of 

B/D=1 and B/D=5 in the wind tunnel tests.    

2. Proper orthogonal decomposition 

2.1. Definition 

The POD is optimum approximation of random field. The main idea of the POD is to find out a set 

of orthogonal basic vectors which can expand a multi-variate random process into a sum of products 

of these basic orthogonal vectors and single-variant uncorrelated random processes. Let consider the 

unsteady surface pressure field is expressed as:     
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 ),()(),( tpptP υυυ +=  (1) 

where ),( tP υ : unsteady pressure; )(υp : mean pressure; ),( tp υ : fluctuating pressure; υ : dimensional 

variables (υ =x;y;z). Fluctuating pressure field ),( tp υ  is usually represented as N-variate random 

process with zero mean containing sub-processes at N points in the field: 

{ }),(),...,,(),,(),( 21 tptptptp N υυυυ = . This field can be expressed as following approximation:      

 ∑=Φ=
i

ii

T tatatp )()()()(),( υφυυ  (2) 

where )(tai
: i-th principal coordinate as uni-variate zero-time random processes [ ] 0)( =taE i

; )(υφi
:  

i-th basic orthogonal vector 
ijj

T

i δυφυφ =)()( (
ijδ : Kronecker delta); { })(),...,(),()( 21 tatatata N= , 

[ ])(),...,(),()( 21 υφυφυφυ N=Φ .  

In mathematical expression of optimality is to find out space function )(υΦ to maximize the projection 

of random field ),( tp υ onto this space function, suitably normalized due to the mean square basis [1]: 

 
2

2

)(

|))(),((|

υ

υυ

Φ

Φ⊗tp
Max  (3) 

where ( )⊗ , . , . , . denote to inner product, expectation, absolute and Euler squared norm operators, 

respectively.       

2.2. Covariance matrix-based proper orthogonal decomposition 

The optimality in (3) can expand under the form of equality: 

 )()(),,( υλυυυυ
υ

Φ=′′Φ′∫ dtR
L

 (4)    

where ),,( tR υυ ′ : covariance value as spatial correlation between two points υυ ′, in the random 

field; λ : weighted coefficient.  

Thus solution of space function )(υΦ can be determined as the eigen problem as follows: 

 )()(),( υυυ ΛΦ=ΦtRp
 (5)  

where ),( tRp υ : covariance matrix of fluctuating pressure sub-processes in field, by which is defined 

as [ ]
NxNijp tRtR ),(),( υυ = , [ ]),(),(),( tptpEtR j

T

iij υυυ = , ),( np iυ : pressure sub-process at position 
iυ ; 

Λ : diagonal eigenvalue matrix ),...,,( 21 Ndiag λλλ=Λ ; )(υΦ : eigenvector matrix (also called POD 

modes).  

The random fluctuating pressure field can be reconstructed due to limited number of the lowest 

POD modes:  

 ∑
=

≈Φ=
N

i

ii tatatp

~

1

)()()()(),( υφυυ , NN <
~

 (6)  

In Eq.(6), the principal coordinate can be computed from measured data: 

 ),()(),()()( 00

1 tptpta T υυυυ Φ=Φ= −  (7) 

where ),(0 tp υ : measured data or observations.  

In the covariance matrix-branched POD, some characteristics can be deducted from the eigen 

problems as follows: 
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In order to estimate the contribution percentage of i-th covariance POD mode on total random 

field, one is based on either proportion of eigenvalues as follows:  

 %

1

∑
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i

i
E

λ

λ
φ

  (9) 

Afterward this procedure is applied for analysis and identification of the random pressure field.  

2.3. Spectral matrix-based proper orthogonal decomposition 

Similar to the covariance matrix-branched POD, cross spectral matrix can be defined from the 

fluctuating pressure field as [ ]
NxNijp fSfS ),(),( υυ = , [ ]),(ˆ),(ˆ),( fpfpEfS j

T

iij υυυ = , where 

),(ˆ fp iυ , ),(ˆ fp jυ : Fourier transforms of the fluctuating pressure sub-processes ),( tp iυ , ),( tp jυ at 

space 
ji υυ , ; f: frequency variables.  

Then spectral space function ),( fυΦ (depending on frequency) can be determined based upon the 

eigen problem of the cross spectral matrix ),( fS p υ of the fluctuating pressure field ),( tp υ as:       

 ),()(),(),( ffffS p υυυ ΦΛ=Φ  (10) 

where ),(),( ff υΦΛ :spectral eigenvalue and eigenvector matrices, )](),...(),([)( fffdiagf λλλ=Λ , 

)],(),...,,(),,([),(
21

ffff
N

υφυφυφυ =Φ (also known as spectral POD modes).  

The random fluctuating pressure field can be reconstructed due to limited number of the lowest 

spectral POD modes:  
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where ),(ˆ),,(ˆ fSfp p υυ : Fourier transform and power spectrum of reconstructed pressure field 

),( tp υ ; *,T: complex conjugate and transpose operations; )(ˆ fa : spectral principal coordinates as 

Fourier transforms of uncorrelated single-variate random processes which can be computed from 

measured data: 

 ∫
∞

∞−

− Φ=Φ= dtetpffpffa ftiT πυυυυ 2

00

1 ),(),(),(ˆ),()(ˆ  (12) 

where ),(ˆ
0 fp υ : Fourier transform of measured data or observations ),(0 tp υ .  

Some characteristics can be deducted from the spectral matrix-branched POD and the eigen 

problems as follows:  

 )(),(),(),(;),(),( ** fffSfIff p

TT Λ=ΦΦ=ΦΦ υυυυυ  (13) 

Energy contribution of i-th spectral POD mode on total field energy can be determined as 

proportion of spectral eigenvalues on limited frequency range as follows:  
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This spectral matrix-branched procedure will be applied for analysis and identification of pressure 

field.  

3. Wind tunnel experiments 

Physical pressure measurements were carried out in the Kyoto University’s open-circuit wind 

tunnel. Three typical rectangular models with slender ratios B/D=1, B/D=1(with Splitter Plate), B/D=5 

were used. Artificial turbulent flows were generated in the wind tunnel at mean wind velocities 3m/s 

(case1), 6m/s (case 2) and 9m/s (case 3), corresponding to intensities of turbulence were 

Iu=11.46%,Iw=11.23%; Iu=10.54%,Iw=9.28%;Iu=9.52%,Iw=6.65%, respectively. Pressure measurement 

holes were arranged inside, in chordwise direction and on one surface of models in which model 

B/D=1 labeled pressure positions from 1 to 10, whereas model B/D=5 from 1 to 19. Unsteady surface 

pressures were simultaneously measured by the multi-channel pressure measurement system (ZOC23 

system: Z (Zero), O (Operation), C (Calibration)). Electric signals were filtered by 100Hz low-pass 

filters (E3201, NF Design Block Co., Ltd.) before passed through A/D converter (Thinknet DF3422, 

Pavec Co., Ltd.) with sampling frequency at 1000Hz in 100 seconds.    

Fig. 1. Wind tunnel configuration, experimental set-ups and experimental models. 

Flow around models due to interaction between ongoing flow and model section is usually known 

as the bluff body flow, which characterized by formation of separated and reattached flows with 

separation bubble and formation of vortex shedding as well. It can be predicted from the past 

knowledge that model B/D=1 is favorable for formation of Karman vortex shedding, where model 
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B/D=5 is typical for formation of separated and reattached flows on model surface. The splitter plate 

was added to model B/D=1 to suppress effect of Karman vortex.  

 

Fig. 2. Bluff body flow patterns around experimental models. 

The bluff body flow patterns around three experimental models can be predicted as shown above 

in Figure 2 (bluff-body flows on one surface are drawn). 

4. Surface pressure distribution and bluff body flow pattern   

Mean and root-mean-square fluctuating pressure coefficients have been normalized by dynamic 

pressure component from measured unsteady pressure data as follows: 

 ( )2

, 5.0 UpC meanp ρ= ; ( )2

, 5.0 UC prmsp ρσ=  (15) 

where 25.0 Uρ : dynamic pressure; p : mean pressure; 
pσ : standard deviation of unsteady pressure.     

Fig. 3. Normalized fluctuating pressure distribution on chordwise positions. 

 Figure 3 shows the chordwise distributions of normalized fluctuating pressures on models at 

three turbulent flow conditions. As can be seen that the fluctuating pressure distributes steadily on 

whole surface of models B/D=1 but distributes dominantly on the leading region of the model B/D=5. 

The fluctuating pressures, furthermore, reduce with respect to decrease of intensities of turbulence.  
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Fig. 4. Power spectra of fluctuating pressures at some chordwise positions. 

Figure 4 indicates power spectra of the fluctuating pressures at some chordwise positions with 

three models and turbulent conditions. As can be seen with the model B/D=1 (without splitter plate) 

that peaked frequencies are observed at 4.15Hz, 8.79Hz and 12.94Hz respective to the three turbulent 

flows. It is explained that the Karman vortex formed and shed at the wake of model. Shedding 

frequency depends on the Strouhal number (St) of cross section, moreover, the Strouhal number can be 

determined St=0.1285. In case B/D=1 with splitter plate, no peaked frequency is observed, it also 

means that no Karman vortex occurred and the splitter plate has suppressed effect of the Karman 

vortex. In case of the model B/D=5, spectral peaks are also observed at frequencies 1.22Hz and 

2.44Hz (U=3m/s); at 2.44Hz, 4.88Hz, 7.32Hz (case 2); at 3.42Hz and 6.84Hz (case 3). It is predicted 

that the bluff body flow is separated and reattached one. Reattachment points are at roughly positions 

6, 7, 8 with respect to an increase of mean velocities. It is supposed that the observed spectral peaks 

are induced by rolled-up vortices shed away at reattachment points toward trailing edge. This agrees 

well with findings presented in the literatures of Hiller and Cherry, 1981 and Cherry et al.,1984 which 

were proposed empirical formula to estimate frequency of rolled-up vortices shedding at reattachment 

point depending on mean velocity and length of separation bubble.   
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5. Results and discussion 

5.1. Analysis on covariance matrix branch 

Eigenvalues and eigenvectors (covariance pressure modes) have been determined from covariance 

matrix of chordwise fluctuating pressures. Figure 5 shows first four covariance modes along 

chordwise positions at the flow case 1 of U=3m/s (two other cases are similar and not be interpreted 

here for sake of brevity). It is noted that all first covariance modes look alike to the fluctuating 

pressure distributions.  

Energy contribution of the lowest covariance modes, estimated following Eq.(9) is given in Table 

1. Obviously, the first covariance mode contributes dominantly to system, energy contribution here 

calculates following the Eq.(9). The first covariance modes contribute 76.92%, 65.29%, 43.77% to 

total energy at the flow case 1 corresponding to models B/D=1 with and without the splitter plate and 

model B/D=5, respectively in the flow case 1. If first two covariance modes are taken into account, the 

energy of these modes holds up to 90.19%, 86.26%, 65.79% of total energy. It is noted that the first 

covariance mode in the model B/D=5 holds energy contribution of only 43.77% to compare with that 

of 76.92%, 65.29% in the other models of B/D=1. This can be explained due to complexity of bluff 

body flow around the model B/D=5 to reduce a role of the first covariance mode.  
      

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. First four covariance pressure modes of experimental models. 

Table 1. Energy contribution of covariance pressure modes (%) 
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2 13.27 13.25 14.41 20.97 22.61 22.08 22.02 23.14 13.29 

3 4.69 4.23 4.62 6.14 6.29 6.10 15.18 15.14 9.48 

4 2.87 2.86 3.17 4.04 4.32 4.41 5.98 5.68 3.40 

5 1.27 1.32 1.45 1.99 2.28 2.45 4.76 4.11 2.79 
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Fig. 6. First four principal coordinates and their power spectral densities. 

Uncorrelated principal coordinates associated with the covariance pressure modes has been 

calculated from the measured pressure data, as first four principal coordinates of three models at the 

flow case 1 and their corresponding power spectra are shown in Figure 6. It is noteworthy that first 

coordinates not only dominate in the power spectrum but contain frequency characteristics of 

the random pressure field, whereas the other coordinates do not contain these frequencies. Thus, the 

first covariance pressure modes and associated principal coordinate will play very important role in the 

identification of random pressure field due to their dominant energy contribution and frequency 

containing of hidden physical events of system.   

5.2. Analysis on spectral matrix branch 

Frequency dependant eigenvalues and eigenvectors (spectral modes) are obtained from the cross 

spectral matrix of the observed pressure field. Figure 7 shows first five spectral eigenvalues on 

frequency band 0÷50Hz at the flow case 1 (U=3m/s). As can be seen from Figure 7, all first spectral 

eigenvalues from three models exhibit much dominantly than others, especially theses first 

eigenvalues also contain all frequency peaks of the pressure field, whereas others do not hold theses 

peaks. This finding means in these investigations that the first spectral mode can represent for hidden 

characteristics of the pressure fields, concretely here the first mode contains frequency of any  physical 

phenomenon happening on models.      

Energy contributions of spectral pressure modes are expressed in Table 2. Similar to the 

covariance pressure modes, the first spectral pressure modes contain dominantly the system energy of 
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the unsteady pressure fields, for example, the first pressure mode contribute 86.04%, 81.30%, 74.77%, 

respectively to the three experimental models at the flow case 1 (U=3m/s). In the cases of two modes 

combined, the first two pressure modes contribute almost 94.12%, 91.45%, 87.45% on the total 

energy, respectively. It is also the same as the covariance matrix branch that the first spectral mode 

contributes 74.77% to the energy in the model B/D=5, whereas it holds 86.04% and 81.30% in two 

other models of B/D=1. This might be also due to an influence of separating and reattachment flow on 

the modal surface, moreover, it might suggest that the more complicate the random pressure fields 

exhibit the less important the first mode contributes.  

 
 

 

 

 
 

     

 

 

 

 

 

Fig. 7. First five spectral eigenvalues of experimental models.  

Table 2. Energy contribution of spectral pressure modes (%) 

Mode   B/D=1   B/D=1 with S.P   B/D=5   

 3m/s 6m/s 9m/s 3m/s 6m/s 9m/s 3m/s 6m/s 9m/s 

1 86.04 85.84 83.02 81.30 77.48 77.88 74.77 73.59 83.93 

2 8.08 8.08 9.92 10.15 12.36 11.98 12.68 14.03 7.69 

3 3.28 3.20 3.68 4.44 5.14 5.00 5.68 5.56 3.57 

4 1.40 1.62 1.94 2.05 2.63 2.70 2.75 2.86 1.86 

5 0.64 0.72 0.81 1.09 1.28 1.34 1.44 1.45 1.06 

 

In comparison on the energy contribution between the covariance modes and the spectral ones, as 

can be seen from Tables 1 and 2 that the first spectral mode contributes higher than the first covariance 

one. Concretely, the first spectral mode holds 94.12%, 91.45%, 87.45% comparing with 76.92%, 

65.29%, 43.77% of the first covariance one in the three models of B/D=1, B/D=1 with splitter plate 

and B/D=5, respectively at the flow case 1 (U=3m/s), similarly, 83.02%, 77.88%, 83.93% to compare 

with 75.36%, 63.3%, 65.9% at flow case 3 (U=9m/s). It might suggest that the first spectral mode 

exhibits better than the first covariance one in the analysis, synthesis and identification of the random 

pressure fields. 
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Fig. 8. First three spectral pressure modes of experimental models. 

The first three spectral pressure modes of the chordwise fluctuating pressure fields of experimental 

models in the flow case 1 are shown at Figure 8 in frequency band 0-50Hz. It seems that more 

investigations must be needed to clarify the physical meaning of the spectral pressure modes as well as 
the linkage between the pressure modes and hidden events of the unsteady pressure fields.  

6. Synthesis and identification of random pressure field 

Firstly, effects of basic and cumulative covariance modes on the synthesis of the unsteady pressure 

fields, as well as role of the first covariance mode on the identification of these pressure fields will be 

verified and investigated. Figures 9 and Figure 10 show the pressure synthesis and the spectral 

pressure one at referred position 5 using individually basic covariance modes (1
st
 mode, 2

nd
 mode, 3

rd
 

mode and 4
th

 mode), whereas Figure 11 indicated the cumulative covariance modes (1
st
 mode and first 

2 modes), respectively with verifying spectral synthesis of the covariance modes to original time series 

of pressures (as target), only position 5 and flow case 1 presented due to brevity.  

B/D=5 

B/D=1 

B/D=1 with S.P 
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Fig. 9. Effect of basic covariance modes on pressure synthesis at referred position 5.  
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Effect of basic covariance modes on spectral pressure synthesis at referred position 5. 

Fig. 11. Effect of cumulative covariance modes on pressure synthesis at referred position 5. 
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As can be seen from Figure 9, Figure 10 that reconstructed pressure time series using the first 

covariance pressure mode is similar to the original pressure, especially its containing of frequency 

peaks can be used to identify hidden characteristics and physical phenomena of the original pressure.  

In comparison, reconstructed pressure portions using 2
nd

 mode, 3
rd
 mode, 4

th
 mode are minor 

contributions to the original pressure, and these pressure portions do not contain the frequency peaks 

in the original pressure. Reconstructed pressure using the first mode, moreover, seems to be good 

agreement to the original pressure at low frequency range between 0-10Hz in models B/D=1, but it is 

notable in spectral difference between reconstructed pressure and original one at high frequency range 

in models B/D=1 and all frequency range (excepting at frequency peaks) in model B/D=5. It is argued 

that the first mode is enough for the reconstructed pressure at the low frequencies in models B/D=1, 

but more cumulative modes may be needed for the reconstructed pressure at the high frequencies. In 

the model B/D=5, moreover, the first mode can be used to identify the field, but it is not enough to 

reconstruct the original pressure, then more modes should be needed for the pressure reconstruction 

due to more complicate distribution of pressure field.  

In the Figure 11, reconstructed pressure using the first mode and cumulative two modes and their 

PSD are presented, it can be seen that only the first mode is enough to reconstruct the original pressure 

in models B/D=1, the cumulative two modes are enough in model B/D=5. 

Fig. 12. Effects of basic and cumulative spectral modes on spectral synthesis of pressure position 5.  

Secondly, effects of basic and cumulative spectral pressure modes on the synthesis of the unsteady 

pressure fields, as well as role of the first spectral mode on the identification of these pressure fields 
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will be investigated. Figure 12 above shows the effects of individual and cumulative spectral modes on 

the synthesis of auto spectra density of the pressure fields, here pressure at referred position 5 in the 

flow case 1 of U=3m/s is used for demonstration. As can be seen in upper row that the first spectral 

mode only is accuracy enough to reconstruct and identify the original pressure in all three 

experimental models and whole frequency range. There are also good agreements between spectrum 

of the original pressure and reconstructed spectrum using the first mode and cumulative two modes.    

7. Conclusion 

Analysis and identification of the unsteady pressure fields measured on some typical rectangular 

sections using both the Covariance Proper Transformation in the time domain and the Spectral Proper 

Transformation in the frequency domain have been presented in this paper. So-called the covariance 

pressure modes and the spectral pressure ones have been orthogonally decomposed from the 

covariance matrix and the spectral one as the comprehensive descriptions of the unsteady pressure 

fields. Some conclusions can be pointed out as follows:  

The first covariance pressure mode and the first spectral mode as well play very important role in 

analysis, synthesis and identification of the unsteady pressure fields. It contributes dominantly the 

system energy of the pressure fields as well as contains certain frequency peaks of possibly physical 

phenomena hidden in these pressure fields. Moreover, it seems that the first spectral pressure mode 

exhibits better than the first covariance one in the analysis, synthesis and identification of the unsteady 

pressure fields 

In low frequency range, only the first mode (either the covariance pressure mode or the spectral 

pressure one) can reconstruct the unsteady pressure fields with enough accuracy, whereas more 

cumulative modes should be needed to reconstruct the unsteady pressure field in the cases of the high 

frequency range and of the complicated pressure distributions and flows as well. In other words, the 

more complicated the pressure field distributes and the bluff body flow behaviors, the less important the 

first mode contributes and the more cumulative modes are needed to reconstruct the pressure fields. 
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