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fcc crystals containing dopant atom using effective potential

Nguyen Van Hung*, Nguyen Thi Nu, Nguyen Bao Trung
Department of Physics, College of Science, VNU, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam

Received 16 June 2008

Abstract. A new procedure for calculation and analysis of dispersion relation and real atomic
vibration of fcc crystals containing dopant atom has been developed using anharmonic effective
potential. Analytical expressions for dispersion relation separated by acoustic and optical
branches; forbidden zone; effective force constant; Debye frequency and temperature; amplitude
and phase of real vibration of atomic chain containing dopant atom have been derived. They
contain Morse potential parameters characterizing vibration of each pair of atoms. Numerical
calculations have been carried out for Cu doped by Ni or by Al. The results agree well with
fundamental properties of these quantities and with experimental values extracted from measured
Morse parameters.

1. Introduction

The real atomic vibration is oft concerned with presence of dopant atom, and study of
thermodynamic properties of substances in this case is an interesting topic [1,2]. The atomic vibration
is always governed by certain interatomic potentials [1,2]. Morse potential has been calculated [1,3],
but for crystals the single pair interatomic potential is not enough for description of the atomic
vibration [4], and the effective interatomic potential model has been developed to consider the local
force constant in XAFS (X-ray Absorption Fine Structure) investigations [3,5-8]. For a two-atomic
system the XAFS cumulants can be expressed as a function of a force constant of the one-dimensional
bare interaction potential [4,9]. For more detailed description of thermodynamic effects of the
substances it is necessary to calculate the dispersion relation between frequency and wave number, the
amplitude and phase of the real atomic vibration.

The purpose of this work is to develop a new procedure for calculation and analysis of the
dispersion relation determining acoustic and optic branches, the forbidden zone between them, the
amplitude and phase of the real atomic vibration of fcc crystals containing a dopant atom. Our
development is the derivations of analytical expressions for these quantities where the anharmonic
effective potential has been applied to calculation of the effective force constant. This effective
potential is constructed by including the influence of immediate atomic neighbors and the Morse
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potential parameters characterizing interaction of each pair of atoms. Numerical calculations have
been carried out for Cu doped by Ni or by Al. The results agree well with fundamental properties of
these quantities and with experimental values extracted from measured Morse parameters [10].

2. Formalism

2.1. Anharmonic effective potential and effective force constant

The anharmonic effective potential for the pure materials [3, 5-8] is now generalized to the case
with a dopant atom according to which the effective interaction potential of the system consisting of a
dopant (D) and the other host (H) atoms is given by
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Here x is deviation between the instantaneous bond length r and its equilibrium value r, , kg is
effective force constant, and k3 the cubic parameter giving an asymmetry in the pair distribution
function, R is bond unit vector. This model is here generalized to oscillation of a pair of atoms with

masses M, and My (e.g., dopant and host atom) in a given system. Their oscillation is influenced

by the immediate neighbors given by the 2™ term in the right side of the second of Eq. (1), where the
sum | is over the central atom (i =1) and the correlated one (i =2), and the sum j is over all their

nearest neighbors, excluding the central and the correlated atom. The latter contributions are described
by the term Vg (x) The third equality is for fcc crystals.

For weak anharmonicity the Morse potential for doping case is expanded to the 3" order

VHD(X) =DHD(_1+a121Dx2 —a?{Dx3 +"'), 3)
where its parameters have been obtained by averaging those of the pure materials, and they are given by

Dp+Dy o _Dpap+Dyal 3 _ Dpajp+Dyoy
Duyp =—"—F—"", @up = . OHpD = :
2 Dp + Dy Dp +Dy
Substituting these Morse parameters in to Eq. (1) and taking into account the atomic distribution of
fce crystal we obtain the effective force constant

khp = 2[(1+37(2)DHD05 %D+%DH05121}, (5)

“)

which governs the vibration process between the host (H) and dopant (D) atoms.
In the case if dopant is taken from the material, i. e., there is only vibration between host atoms,
Eq. (5§) will change into the one for the pure material
ks =5Da’, (6)

obtained previously in [3, 5-8].
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2.2. Dispersion relation

Supposed that the host (H) atom with mass My is located at the point on a distance of a lattice
constant a far from the dopant (D) atom with mass Mp, and both they are in the lattice cell n. The
same distributions for H and D atoms are in the left (n—2)and in the right (n+2)lattice cells. In this

case the moving equations for H and D atoms are given by

y HD
Mpiy , =—ke (2MH,n —Upy _MD,n—Z)’

; HD (7
M piip , ==k (2MD,n —Uy g~ uH,n+2)'
Here the thermal displacement functions of H and D atoms are as follows
g =Upe'™ , ug pin = UHel(aqua) jupy =Upe ™ up o= UDel(m_zqa)’ ®)

q is wave number, and the effective force constant kgyD has the form of Eq. (5).

Substituting Egs. (8) into Egs. (7) and solving their characteristic equation we obtain solution as
analytical expression for the dispersion relation between frequency and wave number

.2
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which creates the acoustic (@_) and optic (@, ) branches for vibration between H and D atoms.
At g = 0 we obtain acoustic frequency «_ =0 and optic frequency «, = max which is itself the

Debye frequency. Therefore the correlated Debye frequency and temperature are given by

wp =\2k3P 1u. 6p=hwp kg, (10)
where kg is Boltzmann constant.

At g =% /2a we obtain the boundary values and their difference as forbidden zone
(a)— )max = \,/ Zk:fD /MH ’ (a)+ )min = VZké{yD /MD ’

Aw, =

HD 1 1
. = (@,) 0 — (@), =2k TR
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so that, at this bound we obtain the following interesting results:
a)M y >Mp — Acy >0: In the lattice there is no vibration corresponding to frequencies in this

zone. That means, at the bound of the 1* Brillouin zone there is a forbidden zone, where the wave with
these frequencies can not be propagated and strongly absorbed.
b) My =M p — Aay =0: The acoustic branch joins the optic one.

c) My <Mp— Acy <0: The acoustic branch overlaps the optic one.

In practice the b) and c) results are usely not real so that the forbidden zone is very important.

2.3. Real lattice vibration in presence of a dopant atom

Further we consider the atomic chain consisting of H atoms with mass My located on the distance
of a lattice constant a from one another, but the central atom is replaced by a dopant with mass
Mp=Mpg(1—¢), where e=1-Mp /My sothat >0 for My >Mp, and e<0for My <M.
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We denote the orders of atoms by integer number n=0,=1,=2,....+/,..., where (+) for H atom

located on the right and (-) for those in the left of the dopant atom located at n=0. In this case the

system of moving equations is given by
My = ke?j"D (u_y —ug) = kg (u_y —u_n),

MDiiO = —kte-IfD (2u0 — U —u_l),

.. HD
MH”I = _keﬁ" (Ltl - Lto) - kejf (Ltl - Lt2) )
M gty = =k (2up —uyy —up4q).

Using the atomic displacement functions u, and @, ,, of H atom

u,=U, expliat), wﬁm =dkey My,
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where k. has the form of Eq. (6).
The homogeneous differential equation Eq. (16) has the following characteristic equation

A+ {ﬁ—z]/# +1 =0,
2
a)max

Dividing both sides of this equation by A1 we obtain

/12{4“’2 —2]/1+1=0,

2
Wmax

2 2

2
which provides the following solution 4; , = [l _ 2o Ji 20 w* - wﬁm .
max wmax

Now we separate the results in two cases based on the vibrating frequencies:
1) & < &,,x (acoustic branch):

In this case 4; 5 is complex and the general solution of Eq. (16) is given by

u; =cycos@l+cysingl,

1/2
40 40’ 207
Q=artg > "2 1= > .
wmax wmax wmax

(12)

13)

(14)

(15)

(16)

a7

(18)

19)

(20)

2



N.V. Hung et al. / VNU Journal of Science, Mathematics - Physics 24 (2008) 223-230 227

This solution can be symmetric and asymmetric. The asymmetric function is neglected because
ug =0. We use only the symmetric function u; =u_; =c; cos ¢.[ . Substituting dispersion relation for

the pure material [1]

= By fsin "—2‘" 22)
into Eq. (21) we obtain ¢ =ga, so that u, = Cos(qa|l| +9). (23)
Substituting Eq. (23) into Eq. (14) with taking into account of Eq. (22) we obtain the phase shift
keﬁ‘ keﬁ‘ qa
5=artg kﬁ_gkﬁ—l l‘g; . (24)
eff eff

which depends on the effective force constants and €. Hence, the lattice defect leads to a phase shift of
the lattice vibration. But in the case of small € and kg / kgjp =1, this d is very small.
2) @ > G,y (optic branch):

In this case Eq. (16) also has characteristic equation Eq. (18) with solution Eq. (19), but in this
case 4, is not complex so that Eq. (16) has solution in the form

w=cd+e 4, |2 <1. (25)
By further analysis we obtain
u =cl/11 for [>0 ; u =62/1_l for [<0, (26)
from the boundary condition (! — Fe0), and
cg=cp=c—uy=c, 27

from the symmetry of displacement functions.
Substituting Egs. (26, 27) into Eq. (14) we obtain

4(()2keﬁ'
2/1+ﬁ(1—8)—2=0. (28)
Wnax eff
From Eq. (18) the frequency is resulted as
2__ =D’
o =~ d (29)

Substituting Eq. (29) into Eq. (28) we obtain
A-Da- E)k ofy

(A-1)2- — 0. (30)
K
Since A #1, from Eq. (30) the parameter A is given by
E—Dk ¢

(e—Dkgy +2k1P
Substituting Eq. (31) into Eq. (26) or Eq. (18) we obtain
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1

1-8&)k ¢
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@2 2P
or into Eq. (29) it is resulted as w? = max Ceff 33)

{[(e =Dy + 2k Ve 1 £))
Here the displacement function u, and frequency & depend on the effective force constants and

on the mass relation between the host (My) and the dopant (Mp) atoms. Moreover, Eq. (33) leads to
the following limiting cases

2 2 HD \?
w : . wmax ke
lim ©° =—"-, lim @’ = ,({Dﬁ) : (34)
kg —key l—g” Mp-My ko 2k g =k, )

where the first case depends on € and the second one on the force constants &, , k ;;D .

3. Numerical results and discussions

Now we apply the above derived expressions to numerical calculations for Cu doped by Ni or by
Al atom. Their Morse potential parameters have been calculated using those of the pure materials
calculated by the procedure presented in [3, 11]. The calculated values of Morse potential parameters

Dyp .ayp , effective force constant ke%-D, the size of forbidden zone Aw,, correlated Debye

frequency wgD and temperature 6//° are presented in Table 1 for Cu doped by Ni or by Al. They are

found to be in good agreement with experimental values extracted from the measured Morse
parameters [7] for Cu doped by Ni. The forbidden zone at the bound of the 1* Brillouin zone written in

Table 1 is from 3.377x10" Hz to 3.513x10" Hz for Cu doped by Ni, and from 2.341x10"” Hz to

3.593x10" Hz for Cu doped by Al. Fig. la illustrates the calculated dispersion relation separating the
acoustic and optic branches, forbidden zones for Cu doped by Ni or by Al. Here the mass of dopant Ni
is close to the one of Cu (host), then the forbidden zone is small, but the mass of dopant Al is more
different from the one of Cu (host), then the forbidden zone is larger. Fig. 1b shows the calculated
absolute magnitudes of the vibrational function of Cu atoms for Cu doped by Ni or by Al atom in the
optic branch (& > &,,, ). Here the vibrations of dopants Ni and Al are localized at [ = 0, and the mass

of dopant atom Al is smaller than the one of Cu, then the amplitude changes of the atomic vibration of
Cu are smaller than the one for Cu doped by Ni. Fig. 2a shows the calculated atomic vibration
u, (I = 2)of Cu and its phase shift for Cu doped by Ni or by Al atom. The vibrations of dopants Ni and
Al are localized at g = 0. Here we consider the phase shift for the acoustic branch (&« < &, ), and the
mass difference between Al and Cu is larger than the one between Ni and Cu, then their phase shift is
larger. Fig. 2b shows the calculated amplitude changes of vibration of Cu atoms in the acoustic branch
for Cu doped by Ni. Here the vibration of dopant Ni is localized at / = 0. All the above obtained
numerical results show that they reflect the main important properties of the considered quantities in
fundamental theories and in experiment [1, 2].
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Table 1. Calculated values of Dy, &yp » keI}IfD , Aoy, wgD s 951

D

for Cu doped by Ni or by Al

g1
Bond Dpp @V)  app @)k HP Nm)  aw, (x10%Hz)  of? (x10PHz)  65° (K)
Cu-Ni, present 0.38 1.39 60.51 0.137 4.87 372.22
Cu-Ni, exp [7] 0.37 1.38 57.05 0.133 4.73 361.42
Cu-Al, present 0.31 1.28 29.10 1.252 3.38 258.10
10"
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Fig. 1. Calculated dispersion relation separating acoustic (a)_) and optic (a) A ) branches (a) and amplitude
changes of atomic vibration of Cu atoms in optic branch (b) for Cu doped by Ni or by Al.
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Fig. 2. Calculated phase shift (a) and amplitude changes (b) of atomic vibration of Cu atoms in acoustic branch
for Cu doped by Ni or by Al atom.
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4. Conclusions

In this work a new procedure for calculation and analysis of the dispersion relation and real atomic
vibration of fcc crystals containing dopant atom has been developed using the anharmonic effective
potential.

Analytical expressions have been derived for determining the acoustic and optic branches,
forbidden zone between them, effective force constant, Debye frequency and temperature, amplitude
and phase changes of the real vibration of atomic chain containing dopant atom, as well as the
localization of the dopant atomic vibration.

Numerical results for Cu doped by Ni or by Al agree well with fundamental properties of the
considered quantities and with experimental values extracted from the measured Morse parameters.
This demonstrates the efficiency and possibility of using anharmonic effective potentials in calculation
and analysis of fundamental physical quantities.
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