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 Abstract. A new procedure for calculation and analysis of dispersion relation and real atomic 

vibration of fcc crystals containing dopant atom has been developed using anharmonic effective 

potential. Analytical expressions for dispersion relation separated by acoustic and optical 

branches; forbidden zone; effective force constant; Debye frequency and temperature; amplitude 

and phase of real vibration of atomic chain containing dopant atom have been derived. They 

contain Morse potential parameters characterizing vibration of each pair of atoms. Numerical 

calculations have been carried out for Cu doped by Ni or by Al. The results agree well with 

fundamental properties of these quantities and with experimental values extracted from measured 

Morse parameters. 

1. Introduction 

The real atomic vibration is oft concerned with presence of dopant atom, and study of 

thermodynamic properties of substances in this case is an interesting topic [1,2]. The atomic vibration 

is always governed by certain interatomic potentials [1,2]. Morse potential has been calculated [1,3], 

but for crystals the single pair interatomic potential is not enough for description of the atomic 

vibration [4], and the effective interatomic potential model has been developed to consider the local 

force constant in XAFS (X-ray Absorption Fine Structure) investigations [3,5-8]. For a two-atomic 

system the XAFS cumulants can be expressed as a function of a force constant of the one-dimensional 

bare interaction potential [4,9]. For more detailed description of thermodynamic effects of the 

substances it is necessary to calculate the dispersion relation between frequency and wave number, the 

amplitude and phase of the real atomic vibration.  

The purpose of this work is to develop a new procedure for calculation and analysis of the 

dispersion relation determining acoustic and optic branches, the forbidden zone between them, the 

amplitude and phase of the real atomic vibration of fcc crystals containing a dopant atom. Our 

development is the derivations of analytical expressions for these quantities where the anharmonic 

effective potential has been applied to calculation of the effective force constant. This effective 

potential is constructed by including the influence of immediate atomic neighbors and the Morse 
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potential parameters characterizing interaction of each pair of atoms. Numerical calculations have 

been carried out for Cu doped by Ni or by Al. The results agree well with fundamental properties of 

these quantities and with experimental values extracted from measured Morse parameters [10]. 

2.  Formalism 

2.1. Anharmonic effective potential and effective force constant  

The anharmonic effective potential for the pure materials [3, 5-8] is now generalized to the case 

with a dopant atom according to which the effective interaction potential of the system consisting of a 

dopant (D) and the other host (H) atoms is given by  
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Here x is deviation between the instantaneous bond length r and its equilibrium value ro , effk is 

effective force constant, and 3k  the cubic parameter giving an asymmetry in the pair distribution 

function, R̂  is bond unit vector. This model is here generalized to oscillation of a pair of atoms with 

masses DM  and HM  (e.g., dopant and host atom) in a given system. Their oscillation is influenced 

by the immediate neighbors given by the 2
nd

 term in the right side of the second of Eq. (1), where the 

sum i  is over the central atom ( 1=i ) and the correlated one ( 2=i ), and the sum j  is over all their 

nearest neighbors, excluding the central and the correlated atom. The latter contributions are described 

by the term ( )xVHD . The third equality is for fcc crystals. 

For weak anharmonicity the Morse potential for doping case is expanded to the 3
rd

 order 

 ( )L+−+−= 32 321)( xxDxV HDHDHDHD αα , (3) 

where its parameters have been obtained by averaging those of the pure materials, and they are given by 
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Substituting these Morse parameters in to Eq. (1) and taking into account the atomic distribution of 

fcc crystal we obtain the effective force constant 
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which governs the vibration process between the host (H) and dopant (D) atoms. 

In the case if dopant is taken from the material, i. e., there is only vibration between host atoms, 

Eq. (5) will change into the one for the pure material 

 2
5 αDkeff = , (6) 

obtained previously in [3, 5-8]. 
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2.2. Dispersion relation 

 Supposed that the host (H) atom with mass MH is located at the point on a distance of a lattice 

constant a far from the dopant (D) atom with mass MD, and both they are in the lattice cell n. The 

same distributions for H and D atoms are in the left ( )2−n and in the right ( )2+n lattice cells. In this 

case the moving equations for H and D atoms are given by 
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Here the thermal displacement functions of H and D atoms are as follows 
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q is wave number, and the effective force constant HD
effk has the form of Eq. (5). 

Substituting Eqs. (8) into Eqs. (7) and solving their characteristic equation we obtain solution as 

analytical expression for the dispersion relation between frequency and wave number 

  
DH

DH

DH

HD
eff

MM

MM

MM

qa
k

+
=














−±=± µ

µµ
ω ,

)(sin411 2

2

2
,  (9) 

which creates the acoustic ( )−ω  and optic ( )+ω  branches for vibration between H and D atoms. 

At q = 0 we obtain acoustic frequency 0=−ω  and optic frequency max=+ω which is itself the 

Debye frequency. Therefore the correlated Debye frequency and temperature are given by 

   BDD
HD
effD kk /,/2 ωθµω h== ,   (10) 

where kB is Boltzmann constant. 

At aq 2/π±= we obtain the boundary values and their difference as forbidden zone 
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so that, at this bound we obtain the following interesting results:  

a) 0>∆→> ±ωDH MM : In the lattice there is no vibration corresponding to frequencies in this 

zone. That means, at the bound of the 1
st
 Brillouin zone there is a forbidden zone, where the wave with 

these frequencies can not be propagated and strongly absorbed. 

b) 0=∆→= ±ωDH MM : The acoustic branch joins the optic one. 

c) 0<∆→< ±ωDH MM : The acoustic branch overlaps the optic one. 

In practice the b) and c) results are usely not real so that the forbidden zone is very important. 

2.3. Real lattice vibration in presence of a dopant atom 

Further we consider the atomic chain consisting of H atoms with mass MH located on the distance 

of a lattice constant a from one another, but the central atom is replaced by a dopant with mass 

( )ε−= 1HD MM , where HD MM /1−=ε  so that 0>ε  for DH MM >  and 0<ε for DH MM < . 
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We denote the orders of atoms by integer number ...,...,,2,1,0 ln ±±±= , where (+) for H atom 

located on the right and (-) for those in the left of the dopant atom located at 0=n . In this case the 

system of moving equations is given by 
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Using the atomic displacement functions un and maxω of  H atom 
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where keff has the form of Eq. (6). 

The homogeneous differential equation Eq. (16) has the following characteristic equation   
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Dividing both sides of this equation by 1−lλ  we obtain 
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which provides the following solution 
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Now we separate the results in two cases based on the vibrating frequencies: 

1) maxωω < (acoustic branch): 

    In this case 2,1λ is complex and the general solution of Eq. (16) is given by 

 lclcul .sin.cos 21 ϕϕ += ,     (20) 
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This solution can be symmetric and asymmetric. The asymmetric function is neglected because  

00 =u . We use only the symmetric function lcuu ll .cos1 ϕ== − . Substituting dispersion relation for 

the pure material [1] 

     
2

sinmax
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into Eq. (21) we obtain qa=ϕ , so that    )cos( δ+= lqaul .   (23) 

Substituting Eq. (23) into Eq. (14) with taking into account of Eq. (22) we obtain the phase shift 
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which depends on the effective force constants and ε. Hence, the lattice defect leads to a phase shift of 

the lattice vibration. But in the case of small ε and 1/ ≈HD
effeff kk , this δ is very small.  

2)   maxωω > (optic branch): 

 In this case Eq. (16) also has characteristic equation Eq. (18) with solution Eq. (19), but in this 

case 2,1λ  is not complex so that Eq. (16) has solution in the form 

   ll
l ccu −+= λλ 21 ,  1<λ .     (25) 

By further analysis we obtain 

   l
l cu λ1=  for  0>l   ;    l

l cu −= λ2  for  0<l ,    (26)  

from the boundary condition ( ±∞→l ), and 

   cuccc =→== 021 ,  (27) 

from the symmetry of displacement functions. 

 Substituting Eqs. (26, 27) into Eq. (14) we obtain 
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From Eq. (18) the frequency is resulted as 
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Substituting Eq. (29) into Eq. (28) we obtain 
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Since  1≠λ , from Eq. (30) the parameter λ  is given by  
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Substituting Eq. (31) into Eq. (26) or Eq. (18) we obtain 
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or into Eq. (29) it is resulted as  
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Here the displacement function 
l

u  and frequency ω depend on the effective force constants and 

on the mass relation between the host (MH) and the dopant (MD) atoms. Moreover, Eq. (33) leads to 

the following limiting cases 
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where the first case depends on ε  and the second one on the force constants 
HD

effeff kk , . 

3. Numerical results and discussions 

Now we apply the above derived expressions to numerical calculations for Cu doped by Ni or by 

Al atom. Their Morse potential parameters have been calculated using those of the pure materials 

calculated by the procedure presented in [3, 11]. The calculated values of Morse potential parameters 

HDHDD α, , effective force constant 
HD
effk , the size of forbidden zone ±∆ω , correlated Debye 

frequency HD
Dω  and temperature HD

Dθ  are presented in Table 1 for Cu doped by Ni or by Al. They are 

found to be in good agreement with experimental values extracted from the measured Morse 

parameters [7] for Cu doped by Ni. The forbidden zone at the bound of the 1
st
 Brillouin zone written in 

Table 1 is from 3.377 Hz1310×  to 3.513 Hz1310× for Cu doped by Ni, and from 2.341 Hz1310×  to 

3.593 Hz1310× for Cu doped by Al. Fig. 1a illustrates the calculated dispersion relation separating the 

acoustic and optic branches, forbidden zones for Cu doped by Ni or by Al. Here the mass of dopant Ni 

is close to the one of Cu (host), then the forbidden zone is small, but the mass of dopant Al is more 

different from the one of Cu (host), then the forbidden zone is larger. Fig. 1b shows the calculated 

absolute magnitudes of the vibrational function of Cu atoms for Cu doped by Ni or by Al atom in the 

optic branch ( maxωω > ). Here the vibrations of dopants Ni and Al are localized at l = 0, and the mass 

of dopant atom Al is smaller than the one of Cu, then the amplitude changes of the atomic vibration of 

Cu are smaller than the one for Cu doped by Ni. Fig. 2a shows the calculated atomic vibration 

u2 ( )2=l of Cu and its phase shift for Cu doped by Ni or by Al atom. The vibrations of dopants Ni and 

Al are localized at q = 0. Here we consider the phase shift for the acoustic branch ( maxωω < ), and the 

mass difference between Al and Cu is larger than the one between Ni and Cu, then their phase shift is 

larger. Fig. 2b shows the calculated amplitude changes of vibration of Cu atoms in the acoustic branch 

for Cu doped by Ni. Here the vibration of dopant Ni is localized at l = 0. All the above obtained 

numerical results show that they reflect the main important properties of the considered quantities in 

fundamental theories and in experiment [1, 2]. 
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Table 1. Calculated values of HDHDD α, , 
HD
effk , ±∆ω , 

HD
Dω , 

HD
Dθ  for Cu doped by Ni or by Al 

 

Bond 
HDD (eV) HDα (Å-1) HD

effk (N/m) ±∆ω ( Hz
13

10× ) HD
Dω ( Hz

13
10× ) 

HD
Dθ (K) 

Cu-Ni, present 0.38 1.39 60.51 0.137 4.87 372.22 

Cu-Ni, exp [7] 0.37 1.38 57.05 0.133 4.73 361.42 

Cu-Al, present 0.31 1.28 29.10 1.252 3.38 258.10 

a)        b)  

Fig. 1. Calculated dispersion relation separating acoustic ( )−ω  and optic ( )+ω  branches (a) and   amplitude 

changes of atomic vibration of Cu atoms in optic branch (b) for Cu doped by Ni or by Al. 

a)              b) 

Fig. 2. Calculated phase shift (a) and amplitude changes (b) of atomic vibration of Cu atoms in acoustic branch 

for Cu doped by Ni or by Al atom. 
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4. Conclusions 

In this work a new procedure for calculation and analysis of the dispersion relation and real atomic 

vibration of fcc crystals containing dopant atom has been developed using the anharmonic effective 

potential.    

Analytical expressions have been derived for determining the acoustic and optic branches, 

forbidden zone between them, effective force constant, Debye frequency and temperature, amplitude 

and phase changes of the real vibration of atomic chain containing dopant atom, as well as the 

localization of the dopant atomic vibration. 

    Numerical results for Cu doped by Ni or by Al agree well with fundamental properties of the 

considered quantities and with experimental values extracted from the measured Morse parameters. 

This demonstrates the efficiency and possibility of using anharmonic effective potentials in calculation 

and analysis of fundamental physical quantities. 
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