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Abstract. The PageRank algorithm, used in the Google search engine, greatly improves the

results of Web search by applying probabilistic model on the link structure of Webs to evaluate

the “importance” of Webs. In PageRank probabilistic model, the links and webs are uniform,

so the rank score of webs are quite independent from their content. In practice, the researchers

often hope that the web results can be ranked by their proposed topics. Moreover, when

computer’s techniques solve given problems ineffectively, it’s necessary to do better research

in theoretical problems. From this judgement, in this paper, we introduce and describe the

MPageRank based on a new probabilistic model supporting multi-context for ranking Webs. A

Web now has different ranking scores, which depends on the given multi topics. The basic idea

in establishing the new MPageRank model is that partition our Web graph into smaller-size

sub Web graph. As a consequence of evaluation and rejection about pages influence weakly to

other pages, the rank score of pages of the original Web graph can be approximated from the

rank score of pages in the new partition Web graph. Similar to the PageRank, the multi ranking

scores in the MPageRank are pre-computed and reflect the hyperlink of Web environment.

1. Introduction

Nowadays the World Wide Web has became very large and heterogeneous, with an extraordinary

grow rate. It creates many new challenges for information retrieval. One of the interesting problems

is that evaluating the importance of a Web. The search engines have to choose from a huge number of

the Web pages, which contain the information specified by the user, the “most important” ones, and

bring them to the user.

The PageRank algorithm used in the Google search engine is the most famous and effective

one in practice. The underlying idea of PageRank is that using the stationary distribution of a random
surfer on the Web graph in order to assign relating ranks to the pages. The link structure of the Web
graph is an abundant source of information about the authority of the Webs. It encodes a considerable
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amount of latent human judgment, and we claim that this type of judgment is necessary to formulate

a notion of authority. In the probabilistic model of PageRank algorithm, the random surfer surfs
indefinitely from page to page, following all outlinks with equal probability and the score of a page is
the probability that the random surfer would visit that page. PageRank scores act as overall authority

values of pages which are independent of any topic.

In practice, a user himself often has a proposed topic when he retrieves information in the

internet. In fact, at first, the surfer seems to visit from the pages, which their content are related to his

proposed topic, and while surfing from page to page following outlinks, he always give priority to surf

these pages. This property is not considered in PageRank because its random surfer surfed indefinitely

from page to page following all outlinks with equal probability. Moreover, the most difficult problem

in PageRank is the rapid development of environment World Wide Web. When computer’s techniques

solve problems inffectively; obviously, theoretical problems should be studied more thoroughly. One

of studying theoretical problems is the research of the topological structure of Web graph and the
partition Web graph.

From the above observations, we introduce and describe the MPageRank algorithm. We assume

that we can find a finite collection of the most popular topics (music, sport, news, health, etc). For

each topic, we can evaluate the correlation between Webs and the topic by scanning their text. Each

node of the Web graph now is weighed and this weight is determined by the given popular topic.

The probabilistic model in the MPageRank doesn’t behavior uniform for all outlinks and nodes, it is

improved by supporting the weight of web nodes. The rank scores of a Web are multi-values. The user

can choose his proposed topic from the collection of given topics, and the chosen rank score is suitable

for this topic. Certainly, the probabilistic model in MPageRank not only enables the user to choose his

prefer topic but also models surf-Web process more precisely than the PageRank’s. However, the main

aim in building new MPageRank model is that weighting the Web graph; so thank to this, we study

more effectively about the theory of partition Web graph. As we know, if our Web graph is partition

into subgraphs which don’t connect together, the calculation in algorithms will be reduced remarkably.

From the definiton of the set (or node) ε-weak in Section 3.2, which evaluates the influence rate of

one page to other pages, and several results in the Section 3.3 about approximating the rank score

of original Web graph through partition Web graph, we can make the MPageRank algorithm to be

cheaper.

The two best-know algorithms which improved Web search results by using the information

hyperlink structure are HITS [1] and PageRank [2]. Given a query, HITS invokes a traditional search

engine to obtain a set of pages relevant to it, expands this set with its inlinks and outlinks, and then

attempts to find two types of pages, hubs and authorities. Because this computation is carried out
at query time, it is not feasible for today’s search engines, which need to handle billions of queries

per day. In contrast, PageRank computes a single measure of quality for a page at crawl time so it is

feasible for today’s search engines as Yahoo!, Google, etc. But PageRank has the restriction that its

score of a page ignores topic corresponding to the query and computation is too complex.

More recently, there are many approachs for surmount the probability score of page ignores topic

corresponding to the query. M. Richardson and P. Domingos [3] proposed the other probabilistic model,

an intelligent random surfer,which approached for rank score function by generating a PageRank vector

for each possible query term. T. Haveliwala [4] has approached by using categories “topic-sensitive”

in Open Directory to bias importance scores, where the vectors and weights were selected according

to the text query without the user’s choice. To speed up the computation of PageRank, S. Kamvar,



Le Trung Kien et al. / VNU Journal of Science, Mathematics - Physics 23 (2007) 35-46 37

T. Haveliwala et al. [5, 6] used successive intermediate iterates to extrapolate successively better

estimates of the true local PageRank scores for each host which are computed independently using
the link structure of that host. Then these local rank scores are weighted by the “importance” of the

corresponding host, and the standard PageRank algorithm is then run using as its starting vector the

weighted concatenation of the local rank score. This idea originated from exploiting a nested block

structure of the Web graph.

What is the model Web graph? How does it grow random? There are interesting questions, they

help us to realize Web environment from other way. The complex network systems have been modeled

as random graphs, it is increasingly recognized that the topology and evolution of real networks are
governed by robust organizing principles. The basic knowledge of random graphs can find in [7].

Based on model random graphs, R. Albert and A. Barab́asi [8] discovered the small-world property and

the clustering coefficient of World Wide Web. Specially, they discovered that the degree distribution

of the web pages follows a power law over several orders of magnitude. D. Callaway et al.[9] have

introduced and analyzed a simple model of a growing network, randomly grown graphs that many of its
properties are exactly solvable, yet it shows a number of non-trivial behaviors. The model demonstrates

that even in the absence of preferential attachment, the fact that a Web environment is grown, rather

than created as a complete entity, leaves an easily identifiable signature in the environment topology.

There have been many papers [10-13] investigate the property of partition Web graph; most

results have theoretical character. J. Kleinberg [10] introduced the notion (ε, k)-detection set play a role
as the evidence for existence of sets which don’t have as most k elements (nodes or edges) and have

the property: if an adversary destroys this set, after which two subsets of the nodes, each at least an ε

fraction of the Web graph, that are disconnected from one another. J. Fakcharoenphol [11] showed that

the (ε, k)-detection set for node failures can be found with probability at least 1−δ by randomly chossing

a subset of nodes of size O(1
ε k log k log k

ε + 1
ε log 1

δ ). F. Chung [12, 13] studied partition property of a

graph based on applications of eigenvalues and eigenvectors of graphs in combinatorial optimization.

Basically, our new theoretical results in this paper originate from the direction of F. Chung research.

The remainder of the paper is organized as follows: Section 2 is the preliminary. The result

of the paper is all in Section 3. In this section, we introduce the MPageRank, present the set of Web

pages having weak inffuence on other Webs. Then we give the result approximate to the rank score

of the original Web graph from the rank score of the new Web graph after destroys all of weak-pages.
Finally, section 4 will be the conclusion.

2. Preliminary

In this section, we give an outline of the probabilistic model of PageRank (2.1), the PageRank

computation (2.2) and discuss the relationship between the content of a page and a given popular topic

to supplement to PageRank algorithm (2.3).

2.1. Probabilistic Model of PageRank

PageRank is the algorithm that evaluates the authority of web pages based on the link structure.

Link structure can be modelled by a directed graph, Web graph. Formally, we denote the web graph as

G = (V, E), where the nodes ,V , corresponding to the pages, and a directed edge (u, v) ∈ E indicates

the presence of a link from u to v (u, v ∈ V ). The rank score vector r : V → [0, 1] denotes the rank
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score of pages, r(u) is the score of page u. PageRank builds the rank score vector based on two

following assumptions:

• The web pages, which are linked by many others pages, have a high score. In literature, we

evaluate the authority of a page from “the crowd”. A web page is considered “high quality” if

the crowd accepts to it.

• If a high score page links to some pages then its destination have a high score too. For example,

a page just has only one link from Yahoo!, but it may be ranked higher than many pages with

more links from obscure places.

We choose the rank score vector as a standing probability distribution of a random walk on the

Web graph. Intuitively, this can be thought as a result of the behavior model of a “random surfer”.

The “random surfer” simply keeps clicking on successive links at random. However, if a real Web

surfer ever gets into a small loop of web pages, it is unlikely that the surfer will be in the loop forever.

Instead, the surfer will jump to some other pages. Formally, time by time the surfer does two following

actions:

(1) Generally, with probability 1− p, the surfer surfs following all outlinks with equal probability.

(2) When the surfer feels bored, with the probability p, it jumps to all nodes in Web graph with

an equal probability.

p is called jump probability ( 0 < p < 1 ), in practice we choose p = 0.1.

Hence, we can give the following intuitive description of PageRank: a page has a high rank if

the sum of the ranks of its inlinks is high.

2.2. Rank score vector in PageRank

Let N = |V | be the number of nodes in Web graph. Let u be a web page, Fu be the set of pages

u points to, Bu be the set of pages that point to u and Ou = |Fu| be the number of links from u. For

pages which have no outlinks we add a link to all pages in the graph1 . In this way, rank which is

lost due to pages with no outlinks is redistributed uniformly to all pages.

From the probabilistic model in MPageRank algorithm, the probability of event that the surfer

is on page u at step i is given by the formula:

ri
u =

p

N
+ (1 − p)

∑

v∈Bu

ri−1
v

Ov

Let R = p
[

1
N

]

N×N
+ (1 − p)M , with Muv =

{

1
Ou

if (u, v) ∈ E

0 otherwise

Matrix R is the transition probability matrix of surfer when he surfs on the Web graph. Rank

score vector in PageRank at step i is given by the formula:

ri = RT ri−1

The above formula shows that (ri)N is a Markov chain with the state space V , corresponding

the transition probability matrix R. It is well-know, see e.g. [14, Chap XV], that a Markov chain has

uniquely a stationary probability distribution if, and only if, it is irreducible and aperiodic. Based on

this knowledge, we have an important result:

Proposition 1. The Markov chain (ri)N exists uniquely the stationary probability distribution, be
denoted r.
1For each page s with no outlinks, we set Fs = V be all N nodes, and for all other nodes augment Bu with s, (Bu ∪ {s})
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Proof. Thus, our Web graph G has probability move from node u to node v: Ruv > 0 so (ri)N is an
irreducible chain. Moreover, each node u ∈ V , since pvu = Rvu > p so u has a period t = 1. Therefore

node u is aperiodic for u ∈ V , so the state space V has only one positive recurrence class (it means that

this is an aperiodic chain). In fact, the Markov chain (ri)N exists uniquely the stationary probability

distribution, r.

This stationary distribution r, itself is a rank score vector in PageRank. Rank score vector in

PageRank is given by formula:

r = RT r (1)

RT is the stochastic matrix so rank score vector r is equivalent to primary eigenvector of the
transition probability matrix R correspond with eigenvalue 1.

2.3. Supplement to PageRank algorithm

Generally, while user retrieves information in internet, he would like to find information related

to the determined topic. Hence, he has a tendency to retrieve web pages which have content related

to this topic. For example, when a user find information about the Manchester United football team,

certainly he prefers to find some web pages having content related to sport topic.

From the above observation, we propose the third assumption that supplements the two assump-

tion of PageRank:

• With a given topic, a page having its content related to this topic will have a high score.

However, how to evalute the relating rate of a Web page with a given topic based on its content?

This is a big and complex problem which attract the attention of scientists in two recent decades. As

we know, this problem is known with the name Text Analysis, which contains some techniques for
analyzing the textual content of individual Web pages. Recently, the publisher John & Sons has

published the book [15] and has one chapter to present this problem. The techniques are presented in

this book have been developed within the fields of information retrieval and machine learning and
include indexing, scoring, and categorization of textual documents. Concretely, the main problem to

evaluate the relating rate of Web’s content with a given topic is that whether we can classify Web pages

or not based on their content. Clearly, this technique is related to information retrieval technique, that

consists of assigning a document of Web to one or more predefined categories.

In this paper, we have no intention of researching on the above problem thoroughly; however,

in order to create theoretical base for results in the next section of the paper, we accept a judgement is

that: “Let a topic T , we can have an evaluation function fT : V −→ [0, 100] to evaluate how relationship

between a page and this topic is.” After constructing the evaluation function fT for the topic T , where

fT (u) evaluates how the page u related to the topic T , we introduce a new probabilistic model for

ranking Webs, MPageRank, improvement of PageRank model based on the evaluation about Web page

importance related to the given topic. Moreover, from the weighed Web graph technique, we present

some new theoretical results to understand more clearly the partition property of Web graph.

3. The MPageRank

There are three problems we discuss in this section. The first, we will describe probabilistic

model in MPageRank algorithm. Next, in theory, we will evaluate and propose quantitatives to partition
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the set of Web pages in Web graph. The end, we will present basic results to suggest the direction of

the cheap algorithm, MPageRank.

3.1. Probabilistic Model of MPageRank

Based on above discussion, we construct the MPageRank algorithm according to a new proba-

bilistic model. To begin constructing the MPageRank, we choose k popular topics T1, T2, . . . , Tk; (e.g.

with k = 5, we can choose a collection of popular topics such as: Politics, Economics, Culture, Society,

Others). For each topic Ti, we consider and give an evaluation function fi to evaluate the relationship

between the content of pages and this topic.

We build the MPageRank algorithm satisfies three following assumptions:

• The web pages, which are linked by many others pages, have a high score.

• If a high score page links to some pages then its destination has high score too.

• With a given topic, a page having its content related to this topic will have a high score.

We choose the rank score vector rM as the the standing probability distribution of a random

surfer on the Web graph. However, difference of PageRank, in MPageRank the surfer doesn’t surf

following all outlinks and choose all the pages when he feels boring with equal probability. It depends

on the topic which the user choose. For each topic Ti, the surfer surfs following outlink (u, v) ∈ E

and jumps to page v when he feels bored with probability:

puv =
fi(v)

∑

j∈Fu

fi(j)
; pv =

fi(v)
∑

j∈V

fi(j)

Formally, time by time this surfer does two following actions:

(1) Generally, with probability 1−p, the surfer stayed at page u surfs following all outlinks, where

surfs to page v (v ∈ Bu) with probability puv.

(2) When the surfer feels bored, with probability p, it jumps to all pages in Web graph, where

page v is probability pv.

Like to the calculation in PageRank, we calculate rank score function rM in MPageRank as

following:

The probability of event that the surfer is on page u at step i is given by the formula:

ri
M (u) = ppu + (1 − p)

∑

v∈Bu

pvuri−1
M (v)

Let RM = pR1 + (1 − p)R2, where R1, R2 are a N × N matrix with R1
uv = pv and

R2
uv =

{

puv if (u, v) ∈ E

0 otherwise

Matrix RM is the transition probability matrix of surfer when he surfs on the Web graph in

probabilistic model of MPageRank. Rank score vector in MPageRank at step i is given by the formula:

ri
M = RT

Mri−1
M

Certainly, (ri
M)N is a Markov chain with the state space V . Similar to PageRank, we have

another result:

Proposition 2. The Markov chain (ri
M )N exists uniquely the stationary probability distribution, be

denoted rM .



Le Trung Kien et al. / VNU Journal of Science, Mathematics - Physics 23 (2007) 35-46 41

Proof. If the Markov chain (ri
M )N has only one irreducible closed subset S, and if S is aperiodic, then

the chain must have a unique the stationary probability distribution. So we simply must show that the

Markov chain (ri
M )N has a single irreducible closed subset S, and that this subset is aperiodic.

Let the set U be the states with nonzero components in v = (pu)N×1. Let S consist of the set

of all states reachable from U along nonzero transition in the chain. S trivially forms a closed subset.

Further, since every state has a transition to U , no subset of S can be closed. Therefore, S forms

an irreducible closed subset. Moreover, every closed subset must contain U , and every closed subset

containing U must contain S. So S must be the unique irreducible closed subset of the chain.

On the other hand, all members in an irreducible closed subset have the same period, so if at

least one state in S has a self-transition, then the subset S is aperiodic. Let u be any state in U .

By construction, there exists a self-transition from u to itself. Therefore S must be aperiodic, so the

Markov chain (ri
M )N exists uniquely the stationary probability distribution, rM .

The stationary distribution rM is the rank score vector in MPageRank and it is given by formula:

rM = RT
MrM (2)

RT
M is the stochastic matrix so rank score vector rM is equivalent to primary eigenvector of the

transition matrix RM correspond with eigenvalue 1.
The naive algorithm computing accurately multi-rank scores for all Webs is presented from

equation (2). If our Web graph is connective so the complexity of the naive algorithm is O(N2), where

N is the number of pages in Web graph. In practice, this complexity is extremely high (N ≈ 6.109).

As we know, if our Web graph has an order N ; however it partition into m subgraphs which has the

corresponding order Ni, (i = 1, m) and don’t connect to each other, so the complexity in computation

of algorithm is O(M2), where M = maxi=1,m Ni. From this observation, we would like to submit

a cheaper algorithm which approximates the rank score vector in MPageRank. Our basic idea in

forming the cheap MPageRank algorithm is that rejects most of Web pages which influence weakly on

MPageRank score of other pages. And Web graph can be partitioned by shrinking to a graph created

from the remain of Web pages. The influence of one page on other pages according to topic depends on

two factors: the hyperlink structure (specify in PageRank score) and the content evaluation function
related to the topic. A central problem of forming the cheap MPageRank algorithm is answering

a question “How the rank score of pages change when we rejects some special pages and their
conjugate edges?”. We will give the answer of this question in two subsection follows:

3.2. Classification of the Web pages

Definition 1. Let a structure Web graph, a page is called the strong structure if its PageRank score
taken in this Web graph is high, and a page is called the weak structure if its PageRank score is low.

Let a given topic, a page is called related if its evaluation function value is high, and a page
is called unrelated if its evaluation function value is low.
Defenition 2. Let a set of Web pages having structure Web graph and a given topic. The weakest
authority set is the set containing all of pages which are weak structure and unrelated.

We classify the set V , the set all of web page in Web graph, according to two subsets. W is a

set which contains all of pages in the weakest authority set, and S contains all that remains of page2.

Certainly, if we define topic’s score of a set is the sum of all topic’s score of pages in it then the

topic’s score of W is too lower than the topic’s score of S.

2 S = V \W
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Let a Web graph G = (V, E) and the given topic T . We have a transition matrix RM and

evaluation function fT for all of pages in Web graph. From MPageRank algorithm we have rank score

vector rM . Let a subset U of V , we write rM (U) =
∑

u∈U

rM(u) and fT (U) =
∑

u∈U

fT (u), so we have

some basic notions as follows:

Defenition 3. A node u is called ε-weak if rM (u) 6 ε.
A subset U of V is called ε-weak if rM(U) 6 ε.

Defenition 4. A subset U is called weak if the transition probability from V \U to U is smaller than
the transition probability from V \U to V \U and the transition probability from U to V \U is smaller
than the transition probability from V \U to V \U .

It is easy to recognize the subset W is a weak set. Let ε = fT (W)
fT (S) (ε is too tiny), we have a

result.

Theorem 1. W is an ε-weak set.
Proof. We can see the detail of solution to Theorem 1 in [16]. The set W is a weak set so the transition

probability from S to W is smaller than the transition probability from S to S, and the transition

probability from W to S is smaller than the transition probability from S to S. It is the main reason

for doing rM (W)
rM (S)

6
fT (W)
fT (S)

= ε, so rM(W ) 6 ε
ε+1

6 ε.

We see that the rank score of pages in set W is really tiny and doesn’t have influence on rank

score of other pages. Therefore, rank score vector in MPageRank is decided by pages in set S. Indeed,

with a weak page u ∈ W , if we reject page u and its conjugate edges, we will have an interesting

question that how the rank score of other pages will change? With the same question when we reject

a set of really weak pages U ⊂ W . That is what we will answer in the next section.

3.3. Main results

Let a given popular topic T , we have a weight directed graph G = (V, E) with a transition

probability matrix in MPageRank algorithm is RM . For u ∈ V (G) is a weak vertex, get G′ = G\u is

a graph (V ′, E′) where V ′ = V \{u} and E′ = {v1v2

∣

∣ v1, v2 ∈ V ′ , v1v2 ∈ E}. Let R
′

M is a transition

probability matrix corresponding to a random surfer in the new Web graphs G′. The new random

surfer will have a stationary distribution, denote by r′M . We have an interesting judgement that the

random surfer on the graph G′ with MPageRank transition probability matrix R
′

M is equivalent to

another random surfer on the graph G with MPageRank transition probability matrix R∗
M when the

evaluation function value fT (u) = 0. Let r∗M is a stationary distribution of random surfer on the graph

G corresponding the transition probability matrix R∗
M , and called r∗M is an expand MPageRank rank

score vector of Web graph G
′

; ∆RM = R∗
M − RM , ∆rM = r∗M − rM .

As the question submited above, we would like to know how the rank score vector, ∆rM =

r∗M − rM , will change when rejecting page u and its conjugate edges. Let G is a Web graph and a

random surfer in MPageRank algorithm surf on its. We have a transition probability matrix RM . If

RM has a stantionary distribution rM , then let a matrix

L = I −
D1/2RMD−1/2 + D−1/2RT

MD1/2

2

where D is a diagonal matrix with entries D(v, v) = rM (v). L is called an expand Laplacian matrix of
a directed Web graph G. Clearly, the expand Laplacian is real symmetric, so its has N = |V (G)| real
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eigenvalues λ0 6 λ1 6 · · · 6 λN−1 (repeated according to their multiplicities). We define λ = mini 6=0 |λi|

is an expand algebraic connectivity of Web graph G, so we have an important result3

Proposition 2. For any tiny real number ε > 0, and a weak page u, rM(u) 6 ε. If r∗M is an expand
rank score vector of Web graph when we reject page u and its conjugate edges, then

‖∆rM‖2 = ‖r∗M − rM‖2
6

2rM(u)

λ
6

2ε

λ
.

Proof. To prove Theorem 2, we consider the Lemma:
Lemma 1. We have

∣

∣[∆RT
M .rM ](i)

∣

∣ 6 rM (u), ∀i ∈ V \{u}.

Proof. Let B1
u = {v ∈ Bu | Fv 6= {u}}, B2

u = Bu\B
1
u = {v ∈ Bu | Fv = {u}}, we have

• If i 6= u and i 6∈ Fu

[∆RT
M.rM ](i) =

∑

j∈B1
u

∆R
ji
M .rM(j) +

∑

j∈B2
u

∆R
ji
M .rM(j) + ∆Rui

M.rM (u)

=
∑

j∈B1
u∩Bi

fT (i)

fT (Fj) − fT (u)

fT (u)rM (j)

fT (Fj)
+

∑

j∈B2
u

fT (j)

fT (V ) − fT (u)

fT (u)rM(j)

fT (Fj)

because when j ∈ B2
u so Fj = {u} ⇒ fT (u) = fT (Fj). Clearly,

fT (i)
fT (Fj)−fT (u)

6 1 and
fT (j)

fT (V )−fT (u) 6 1, we have

∣

∣[∆RT
M.rM ](i)

∣

∣ 6
1

1 − p

[

(1 − p)
∑

j∈Bu

fT (u)rM(j)

fT (Fj)
+ p

fT (u)

fT (V )

]

−
p

1 − p

fT (u)

fT (V )

6
1

1 − p
rM(u) −

p

1 − p

fT (u)

fT (V )
.

From Theorem 1, if page u is weak, we have

rM(u) 6
fT (u)

fT (V )
⇒

1

1 − p
rM (u) −

p

1 − p

fT (u)

fT (V )
6 rM(u).

• If i 6= u and i ∈ Fu

∣

∣[∆RT
M .rM ](i)

∣

∣ =
∣

∣

∣

∑

j∈B1
u

∆R
ji
M .rM(j) +

∑

j∈B2
u

∆R
ji
M .rM(j) + ∆Rui

M .rM(u) −
fT (i)

fT (Fu)
rM(u)

∣

∣

∣

6

∣

∣

∣

[ 1

1 − p
rM(u) −

p

1 − p

fT (u)

fT (V )

]

−
fT (i)

fT (Fu)
rM (u)

∣

∣

∣

6 max
{ 1

1 − p
rM(u) −

p

1 − p

fT (u)

fT (V )
,

fT (i)

fT (Fu)
rM (u)

}

6 rM (u).

Lemma is proven.

3 We can see carefully these conceptions in [16].
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Now, we prove Theorem 2. We have

r∗M = R∗T
M r∗M

⇒ r∗M = RT
MrM + RT

M∆rM + ∆RT
MrM + ∆RT

M∆rM

⇒ [IN − RT
M − ∆RT

M ]∆rM = ∆RT
MrM

⇒ ∆rT
M [IN − R∗

M ] = rT
M∆RM

⇒ ∆rT
M [IN − R∗

M ]∆rM = rT
M∆RM∆rM .

From Lemma 1 and
∑

i rM (i) =
∑

i r∗M (i) = 1, we have

∣

∣rT
M∆RM∆rM

∣

∣ 6 2rM(u).

To prove

‖∆rM‖2
6

2rM (u)

λ

we consider the second Lemma

Lemma 2. [16] For a stochastic matrix R with order n; d is a vector with same order n and satisfied
∑

d2
i = 1. Let a diagonal matrix D, where Dii = di > 0. So we have

min
xe=0
‖x‖=1

{
∣

∣xT (In − R)x
∣

∣

}

= min
xd=0
‖x‖=1

{
∣

∣xT (In − DRD−1)x
∣

∣

}

= min
xd=0
‖x‖=1

{

xT (I−
DRD−1 + (DRD−1)T

2
)x

}

.

The Lemma 2 is correctly proven based on the basic knownledge of eigenvector. From Lemma

2, let’s a case with d = r
1

2

M (d(v) = r
1

2

M (v)), we have

min
xe=0,x 6=0

{

∣

∣xT (IN−1 − R
′

M)x
∣

∣

‖x‖2

}

= min
xd=0,x 6=0

{

∣

∣xT (IN−1 − D
1

2 R
′

MD− 1

2 )x
∣

∣

‖x‖2

}

= min
xd=0,x 6=0

{xTLx

‖x‖2

}

= λ.

So if ∆
′

rM is (N − 1)-vector which produced from vector ∆rM by rejecting page u, then
∑

i ∆
′

rM (i) = 0 (vector ∆
′

rM orthogonal with e = (1, . . . , 1)T ).

Therefore we have

∣

∣∆rT
M [IN − R∗

M ]∆rM

∣

∣ =
∣

∣∆
′

rT
M [IN − R

′

M ]∆
′

rM

∣

∣ > λ‖∆
′

rM‖2

⇒ λ‖∆
′

rM‖2 = λ‖∆rM‖2
6 2rM (u)

⇒ ‖∆rM‖2
6

2rM (u)

λ
6

2ε

λ
.

The Theorem is proven.

As we know, the value λ is called an algebraic connectivity of Web graph G according to the

transition probability matrix RM . In the paper [16], we have a result to bound the value λ as follow:

Let a weight directed graph G which fT (v) is a weight value for each node v. The transition

probability matrix RM of random surfer in MPageRank surfed on graph G is defined as follows:
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For a real number p ∈ [0, 1], ∀i, j ∈ V (G) then

RM (i, j) =



























(1 − p) fT (j)
∑

k∈Fi

fT (k)
+ p

fT (j)
∑

k∈V (G)

fT (k)
if Oi > 0

fT (j)
∑

k∈V (G)

fT (k)
if Oi = 0

p is a jump probability4 .

Proposition 3. [16]. If λ is an expand algebraic connectivity of G, then we have

λ >
p2

8
.

As a directed consequence of Theorem 2 and Proposition 3, we have two important results.

Corollary 1. For a tiny real number ε > 0, and a weak page u, rM (u) 6 ε. If r∗M is an expand rank
score vector of Web graph when we reject page u and its conjugate edges, then

‖∆rM‖2
6

16rM(u)

p2
6

16ε

p2
.

Corollary 2. For a tiny real number ε > 0, and a set of weak pages W ⊆ V (G), rM (W ) 6 ε. If r∗M
is an expand rank score vector of Web graph when we reject all of pages in W and their conjugate
edges, then

‖∆rM‖2
6

16rM(W )

p2
6

16ε

p2
.

4. Conclusion

To highlight the consideration to user’s purpose, we introduced and described MPageRank

algorithm according to improved probabilistic model which allowed ranking Webs depending on the

given topic. Different to PageRank just conforms only two assumptions, the model probability in

MPageRank conforms three assumptions. In MPageRank model, we supplemented more assumption

that is:

• Considering with a given topic, page having its content related to this topic will has a high

score.

We believe that our model will model more exactly upon real surf-Web. Therefore in theory,

our rank score of pages will satisfy more sufficient for the users.

Similar to the computation in PageRank, MPageRank model is preformed based on knowledge of

Markov chain. Our transition matrix is irreducible and aperiodic so rank score function in MPageRank

exists and itself is a primitive eigenvector of this transition matrix with eigenvalue 1. From the ideas

that partition Web graph to many subgraphs to make the algorithm to be more simple, this paper

introduces the way to approximate rank score vector when we reject some weakly influenced pages

and their conjugate edges.

Of course, this paper doesn’t give the way to known where the page, called the bridge of Web
graph, which when we reject it and its conjugate edges, the Web graph will be disconnected, and

∗ we can see the definition of Oi in page 4 of this paper.
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what an given popular topic making our Web graph having many bridges. It is difficult and important

problems. This is our future works!
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