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Abstract. In this paper, we study the asymptotic behavior of linear differential equations

under nonlinear perturbation. Let’s consider the delay differential equations:

dx

dt
= Ax + f(t, xt),

where t ∈ R+, A ∈ L(E), f : R+ ×E −→ E and (T (t))t≥0 is C0-semigroup be generated by

A. We will give some sufficient conditions for uniformly stable and asymptotic equivalence of

above equations.

1. Introduction

Consider the following delay differential equations (Eq.):

dx(t)

dt
= Ax(t) + µf(t, x(t + θ)), t ≥ 0, −h 6 θ 6 0, (1)

where x(.) ∈ E, A ∈ L(E), E is a Banach space, the operator f : R+ × E −→ E is continuous in t

and satisfies all following conditions:

f(t, 0) = 0, (2)

‖f(t, y(t + θ)) − f(t, z(t + θ))‖ 6 L sup
−h6θ60

‖y(t + θ) − z(t + θ)‖. (3)

In [1], K.G.Valeev proved that if Eq.(1) satisfies (2) and (3) with given initial condition

x(t) = ϕ(t), −h 6 t 6 0, ϕ(.) ∈ C([−h, 0], E),

then Eq.(1) has a unique solution on the half-line.

In recent years, much attentions have been devoted to the qualitative theory of solutions of dif-

ferential equation with time delay (see [1-5]). In this direction, a particular attentions has been focused

on extending the classical results on the asymptotic behavior of solutions of differential equations. In

many applied models concerned to mechanics, models of biology and population (see [6-9]).

In this paper, we give some extending results for sufficient conditions of stable and asymptotic

equivalence (see [1-5]) of linear delay differential equations under nonlinear perturbation in Banach

space. The obtained results thank to use of the theories of general dynamic systems (see [10, 11]).
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2. Main results

2.1. The uniformly stable of null solution of delay differential equations

Let us consider the delay differential equations

dx(t)

dt
= Ax(t) + µf(t, x(t + θ)) t ≥ 0,−h 6 θ 6 0, (4)

with given initial condition x(t) = ϕ(t),−h 6 t 6 0. Where x(.) ∈ E; A ∈ L(E); f : R+ × E → E

is continuous in t and satisfies following conditions

f(t, 0) = 0, (5)

‖f(t, y(t + θ)) − f(t, z(t + θ))‖ 6 g(t) sup
−h6θ60

‖y(t + θ) − z(t + θ)‖, (6)

∫ ∞

0
g(τ)dτ 6 m < ∞. (7)

Let (T (t))t≥0 be a continuous semigroup of linear operators in the Banach space E and (A,

D(A)) is generator of T(t) (see [10]). Throughout this paper, we always assume that (T (t))t≥0 is

strongly continuous semigroup (C0- semigroup ). We show that if Eq.(4) satisfies conditions (5), (6),

(7) then the solution of Eq.(4), with given initial condition x(t) = ϕ(t);−h 6 t 6 0, can be written

in the form
{

x(t) = T (t)ϕ(0) + µ
∫ t

0 T (t − s)f(s, x(s + θ))ds, t ≥ 0,

x(t) = ϕ(t), −h 6 t 6 0
(8)

First of all, we investigate an extention of the conditions for stable (see [12]) of solution of delay

linear diffirential equation under nonlinear perturbation. We recall that, the conditions (5), (6), (7) are

satisfied. By using the Gronwall-Bellman’s lemma(see [12]), we can get the following result:

Theorem 2.1. Suppose (T (t))t≥0 is C0- semigroup with the generator (A, D(A)). The following
assertions are true:

(1) If ‖T (t)‖ 6 M, ∀t ≥ 0, then the null solution x(t) ≡ 0 of Eq.(4) is uniformly stable.
(2) If limt→∞ ‖T (t)‖ = 0, then the null solution x(t) ≡ 0 of Eq.(4) is uniformly exponential

stable.

Proof. Throughout this paper in proof of theorems, we always use the following norm

|||x(t)||| = sup
t06τ6t

‖x(τ)‖, t > t0 > −h.

i) Since ‖T (t)‖ 6 M, ∀t ≥ 0, the solution of Eq.(4) with intial condition x(t) = ϕ(t);−h 6 t 6 0

exists solely. It can be written in the form:

x(t) = T (t)ϕ(0) + µ

∫ t

0

T (t − s)f(s, x(s + θ))ds, t ≥ 0.

Thus

‖x(t)‖ 6 ‖T (t)‖‖ϕ(0)‖+ µ

∫ t

0
‖T (t − s)‖‖f(s, x(s + θ))‖ds, t ≥ 0.

By using assumptions (5), (6), (7), (i), we have

‖x(t)‖ 6 M‖ϕ(0)‖+

∫ t

0
M‖f(s, x(s + θ))‖ds, t ≥ 0.
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and

‖x(t)‖ 6 M‖ϕ(0)‖+

∫ t

0
Mg(s)‖x(s + θ)‖ds, t ≥ 0.

Hence

|‖x(t)‖ 6 M‖ϕ(0)‖+

∫ t

0
Mg(s).|||x(s + θ)|||ds, t ≥ 0.

Using the Gronwall-Bellman’s inequality, we obtain:

‖x(t)‖ 6 M‖ϕ(0)‖.e
Mµ

∫

t

t0
g(s)ds

.

Consequently,

‖x(t)‖ 6 M‖ϕ(0)‖.eµMqm.

Put

δ =
ε

MeµMqm
.

Since definition, we can show that the null solution x(t) ≡ 0 of Eq.(4) is uniformly stable.

ii) By assumption (ii) of the theorem there exist the positive constants C > 1 and λ

‖T (t)‖ 6 Ce−λt, ∀t > 0.

By the similar argument as (i), we have

‖x(t)‖ 6 Ce−λt‖ϕ(0)‖+ µ

∫ t

0

Ce−λ(t−s)‖f(s, x(s + θ))‖ds, t ≥ 0.

By (7), we have

‖x(t)‖ 6 Ce−λt‖ϕ(0)‖+

∫ t

0
Ce−λ(t−s)g(s)‖x(s + θ))‖ds, t ≥ 0.

and,

‖x(t)‖eλt
6 C‖ϕ(0)‖+ µ

∫ t

0
Ceλ(s)g(s).|||x(s + θ))|||ds, t ≥ 0.

hence

‖x(t)‖eλt
6 C‖ϕ(0)‖.e

Cµ
∫

t

t0
g(s)ds

.

Consequently,

‖x(t)‖ 6 C‖ϕ(0)‖eµCqme−λt.

It proves that the null solution x(t) ≡ 0 of Eq.(4) is uniformly exponential stable.

2.2. The asymptotic equivalence of linear delay differential equations under nonlinear perturbation
in Banach space

In this section, we are interested in finding conditions such that the solution of Eq.(4) in the

case µ = 0 will be asymptotic equivalence to the solution of Eq.(4) in the case µ 6= 0(in the following

we will give µ = 1).The obtained result of this part is an extention of Levinson’s theorem to the case

of linear delay differential equations under nonlinear perturbation (see [1, 13, 14]). Let’s consider the

two following differential equations:

dx(t)

dt
= Ax(t), t ≥ 0, (9)
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dy(t)

dt
= Ay(t) + f(t, y(t + θ)), t ≥ 0, (10)

where x(.) ∈ E, A ∈ L(E), f : R+ × E −→ E is satisfied (5), (6), (7).

Definition 2.2. Eq.(9) and Eq.(10) are said to be asymptotic equivalence if for every solution x(t)

of Eq.(9), there exists a solution y(t) of Eq.(10) such that

lim
t→+∞

‖y(t)− x(t)‖ = 0,

and conversely.

Next, we prove the following theorem :

Theorem 2.3. Suppose that there exist positive constants M, C, ω and a projector P : E → E such
that:

(1) ‖T (t)P‖ 6 Me−ωt, for all t ∈ R+,
(2) ‖T (t)(I − P )‖ 6 C, for all t ∈ R.

Then Eq.(9) and Eq.(10) are asymptotic equivalence.
Proof. In order to prove the theorem, we recall that assumptions (5),(6) and (7) hold for (10). Put

U(t) = T (t)P, V (t) = T (t)(I − P ).

We get

T (t) = U(t) + V (t).

Hence

T (t − s)V (s − τ) = T (t − s)T (s − τ)(I − P )

= V (t − τ).

Next, The proof of the theorem falls into two steps.

Step 1: Assume that y(t) is the solution of Eq.(9), for each sufficiently large s ≥ 0, y(s) ∈ E

we set

x(s) = y(s) +

∞
∫

s

V (s − τ)f(τ, y(τ + θ))dτ.

Therefore, the solution of Eq.(10) and Eq.(9) can be written in the form

x(t) = T (t − s)x(s)

= T (t − s)y(s) +

∞
∫

s

V (t − τ)f(τ, y(τ + θ))dτ.

y(t) = T (t − s)y(s) +

∫ t

0
T (t − τ)f(τ, y(τ + θ))dτ ; t ≥ s,

Consequently

‖y(t)− x(t)‖ =
∥

∥

∥
−

∞
∫

s

V (t − τ)f(τ, y(τ + θ))dτ +

t
∫

s

T (t − τ)f(τ, y(τ + θ))dτ
∥

∥

∥
.
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By the suppositions (i), (ii) we have

‖y(t)− x(t)‖ 6 M.

t
∫

s

e−ω(t−τ )g(τ)‖y(τ + θ)‖dτ + C

∞
∫

t

g(τ)‖y(τ + θ)‖dτ

6 M.

t
∫

s

e−ω(t−τ )g(τ)|||y(τ + θ)|||dτ + C

∞
∫

t

g(τ)|||y(τ + θ)|||dτ

6 MM0

t
∫

s

e−ω(t−τ )g(τ)dτ + CM0

∞
∫

t

g(τ)dt, ∀t ≥ s,

where M0 is constant such that ‖y(s)‖ 6 M0, ∀s ≥ 0 (see theorem 2.1). Hence

‖y(t) − x(t)‖ 6 M1

t
∫

s

e−ω(t−τ )g(τ)dτ + M2

∞
∫

t

g(τ)dt, ∀t ≥ s,

where M1 = MM0, M2 = CM0. By the similar arguments as in [1], we have

‖y(t) − x(t)‖ <
ε

3
+

ε

3
+

ε

3
= ε.

This means that

lim
t→∞

‖y(t) − x(t)‖ = 0.

Step 2: Let x(t) is the solution of Eq.(10). By successive approximations method, we can show that

for each x(s) ∈ E (with sufficiently large s ≥ ∆ > 0), there are a solution y(t) of Eq.(9) satisfies the

following condition

x(s) = y(s) +

∞
∫

s

V (s − τ)f(τ, y(τ + θ))dτ.

Put

y(t) = T (t − s)y(s) +

∫ t

0
T (t − s)f(τ, y(τ + θ))dτ, t ≥ s.

Continuing the above process by the same arguments as step 1, we obtain

‖y(t)− x(t)‖ < ε

Consequently

lim
t→∞

‖y(t) − x(t)‖ = 0.

2.3. Application

In recent years, many new dynamic systems of population have been formulated and studied. In

this direction, G.F.Webb has established the theory of nonlinear age-dependent population dynamics in

1985 (see [9]). After, G.F.Webb and H.Inaba have studied the asymptotic properties of the population

dynamics in the following model (see [6, 7, 9]):

(
∂

∂a
+

∂

∂t
)p(a, t) = Q(a)p(a, t) + µf(a, t), (11)
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p(0, t) =

∫ ω

0
M(a)p(a, t)da. t > 0,

p(a, 0) = φ(a).

This inhomogeneous model (11) is rewritten as an astract Cauchy problem (see [6, 7]):

d

dt
p(t) = Ap(t) + µf(t, p(t)), t > 0.

p(0) = ϕ

In next, we assume that E = L1(0, ω; Cn) (see [9], H.Inaba), A : D(A) ⊂ E → E and operator

f : R+ × E → E is continuous in t and satisfies all conditions (5), (6), (7). And now, we introduce

the delay differential equation:

d

dt
p(t) = Ap(t) + µf(t, p(t + θ)), t > 0, −h 6 θ 6 0, (12)

p(t) = ϕ(t), −h 6 t 6 0.

In the following, we recall that operator A will be unbounded (the hypothesis A ∈ L(E) is not right).

However, if we further assume that (T (t))t≥0 is bounded C0- semigoup with populations generator (A,

D(A)), then we can investigate the assertion (2.5) for Eq.(13) (see [7, 11, 12]). Applying the process

of argument of parts 2.1 and 2.2 to the uniformlly stable and asymptotic equivalence of above model

of population, we will give the following results :

a. If the C0- semigoup operator (T (t))t≥0 is uniformly bounded then the null solution of Eq.(12)

is uniformly stable.

b. If the C0- semigoup operator (T (t))t≥0 satisfies the hypothesis of theorem (2.3) then the

solution of Eq.(12) in the case µ = 0 is asymptotic equivalence to the solution of Eq.(12) in the case

µ 6= 0.

Ackowledgments. This paper is based on the talk given at the Conference on Mathematics, Mechanics,

and Informatics, Hanoi, 7/10/2006, on the occasion of 50th Anniversary of Department of Mathematics,

Mechanics and Informatics, Vietnam National University. The authors are grateful to the referee for

carefully reading the paper and suggestions to improve the presentation.

References

[1] D.D. Chau, On the asymptotic equivalence of linear diffirential equations in Hilbert spaces, VNU Journal of science,
Mathematics-Physics 18 N02 (2002) 8.

[2] J. Kato, The asymptotic equivalence of functional differenttial equations, J. Differenttial Equat. 1 (1996) 306.
[3] E.V. Voskoresenski, Asymptotic equivalence of systems of differential equations, Results of mathematic science 40

(1985) 245 (Russian).

[4] M. Svec, Itegral and asymptotic equivelence of two systems of diffrential equations, Equadiff. Proceedings of the fifth
Czechoslovak confrece on diffirential equations and Their Application held in Bratislava 1981, Teubner, Leipzig, 1982,

p 329-338.

[5] N. Levinson, The asymptotic behavior of systems of linear differental equations, Amer. J. Math. 63 (1946) 1.
[6] H. Inaba, A semigroup - approach to the strong ergodic theorem of the multistate stable population process,Mathematical

Population Studies 1 (1988) 49.
[7] H. Inaba, Asymptotic properties of the inhomogeneuos Lotka - Von Foerster system, Mathematical Population Studies

1 (1988) 247.

[8] C.M. Macrcus, F.R. Waugh, R.M. Westevelt, Nonlinear dynamics and stability of analoge neural networks, Physica D
51 (1991) 234.



D.D. Chau, N.B. Cuong / VNU Journal of Science, Mathematics - Physics 23 (2007) 63-69 69

[9] G.F. Webb, Theory of nonlinear age- dependent population dynamics Pure and applied mathematics, a program of
monographs, textbooks, Lecture Notes, 1985.

[10] K.J. Engel, R. Nagel, One-parametter semigoup for Linear Evolution Equations, Springer-Verlag, New York, Berlin,
London, Paris, Tokyo, Hong kong, Barcelona, Heidelberg, Milan, Singapore, 2000.

[11] A. Pazy, Semigoup of linear operators and applications to partial differential equations, Springer-Verlag New York
Inc, 1983.

[12] K.G. Valeev, O.A. Raoutukov, Infinite system of differential equations, Scientis publishing house Anma-Ata, 1974
(Russian).

[13] N.T. Hoan, Asymptotic equivalence of systems of differential equations, IZV.Acad. Nauk ASSR 2 (1975) 35 (Russian).
[14] C.K. Sung, H.G. Yoon, J.K. Nam, Asymptotic equivalence between to linear differential systems, Ann. Differential

Equation 13 (1997) 44.


