
VNU Journal of Science, Mathematics - Physics 23 (2007) 76-83

Deeper Inside Finite-state Markov chains

Le Trung Kien1,∗ Le Trung Hieu2, Tran Loc Hung1, Nguyen Duy Tien3

1Department of Mathematics, Hue University, 77 Nguyen Hue, Hue city, Vietnam
2Mathematics & Mechanics Faculty, Saint-Petersburg State University, Russia

3Department of Mathematics, Mechanics, Informatics, College of Science, VNU

334, Nguyen Trai, Hanoi, Vietnam

Received 8 December 2006; received in revised form 2 August 2007

Abstract. The effective application of Markov chains has been paid much attention, and it has

raised a lot of theoretical and applied problems. In this paper, we would like to approach one of

these problems which is finding the long-run behavior of extremely huge-state Markov chains

according to the direction of investigating the structure of Markov Graph to reduce complexity

of computation. We focus on the way to access to the finite-state Markov chain theory via

Graph theory. We suggested some basic knowledge about state classification and a small project

of modelling the structure and the moving process of the finite-state Markov chain model. This

project based on the remark that it is impossible to study deeperly the finite-state Markov chain

theory if we do not have the clear sense about the structure and the movement of it.

1. Introduction

It is undeniable that the finite-state Markov chain in recent years has lots of important appli-

cations in modelling the natural and social phenomena. We may enumerate some branches of science

such as weather forecast, system magement, Web information searching, machine learning which the

model of finite-state Markov chain is applied for. Markov chain effective application has been paid

much attention, and it has raised a lot of theoretical problems as well as applied ones. One of these

is that how to find the long-run behavior of Markov chain when the state space is extremely huge.

For example, to rank Webs based on the hyperlink structure of Web Graph, PageRank algorithm [1] of

information searching engine Google has to identify the stationary distribution of an irreducible aperi-

odic Markov chain with 6 billion states. In this case, it is obvious that applying the classic methods

to identify the stationary distribution is impractical. To solve this problem, some ideas are consid-

ered such as measuring approximately the stationary distribution [2-6] or investigating the structure of

Markov Graph to reduce complexity of computation [7-9].
The problem of measuring approximately the stationary distribution of huge-state Markov chains

has been taken into consideration by the scientists through last two decades. Especially, some groups of

scientists of Stanford university and other authoritative research centers were interested in identifing the

stationary distribution of Web Markov chain to evaluate the important of Web. S.Kamvar, T.Haveliwala

∗ Corresponding author. Tel.: 84-054-822407.
E-mail: hieukien@hotmail.com

76



Le Trung Kien et al. / VNU Journal of Science, Mathematics - Physics 23 (2007) 76-83 77

et al. [4, 5] suggested using successive intermediate iterates to extrapolate successively better estimates

of the true PageRank values. They used the special properties from the second eigenvalue of Google

matrix and Power method. J. Kleinberg [6] introduced the notion (ε, k)-detection set play a role as
the evidence for existence of sets which do not have as most k states and have the property: if an

adversary destroys this set, after which two subsets of the states, each at least an ε fraction of the state

space of the Markov chain, that are not accessible from one another. Developing on J. Kleinberg’s

basic ideas, J. Fakcharoenphol [3] showed that the (ε, k)-detection set for state failures can be found

with probability at least 1−δ by randomly chossing a subset of nodes of size O(1
ε
k logk log k

ε
+ 1

ε
log 1

δ
).

F. Chung [2] studied partition property of a Markov chain based on applications of eigenvalues and

eigenvectors of its transition probability matrix in combinatorial optimization. The partition property

can be used to deal with various problems that often arise in the study of huge-state Markov chains

including bounding the rate of convergence and deriving comparison theorems.

In this paper, we would like to access to the problem according to the direction of investigating

the structure of Markov Graph to reduce complexity of computation. As we know, the stationary

distribution of finite-state Markov chain depends only on the link-structure of its recurrent states and

it receives zero value at the transient states. In addition, as a consequence of solving optimally the

state classification, we will recognize easilier some new important properties about the graph-structure

of this Markov chain. In [8] based on the results in Random Graph theory, B. Bollobás proved the
correctness of the property: Let n be a positive integer, 0 6 p 6 1. The random Markov chain
M(n, p) is a probability space over the set of Markov chains on the state set {1, 2, . . . , n} determined

by P{pij > 0} = p, with these events mutually independent. Therefore, if n is so large and p = O(ln n
n

)

then almost sure a Markov chain inM(n, p) will be irreducible aperiodic. Clearly this is a property of

authority; it makes us have a deeper understanding about a fundamental class of finite-state Markov

chains, irreducible aperiodic Markov chain class. More importantly, it allows us to think about the
new way to investigate deeperly the finite-state Markov chain theory basing on the Random Graph

Theory.

From this observation, our paper focuses on the way to access to the finite-state Markov chain

theory via Graph theory; then model and construct clearerly than basic properties of the finite-state

Markov chain theory. Basing on some theoretical results which have been built in Section 2 and Section

3, we have constructed State Classification algorithm to classify state of finite-state Markov chain.

Our purpose to build this algorithm comes from the idea “All problems will be clearer if we give out

the algorithm to solve them”. However, our imagination and visual images are completely different

from each other. In the reality, no projects have modelled specifically the movement of finite-state

Markov chain process; from the theoretically basic algorithms which have just been constructed; in

Section 4, we have built a small project with the purpose of modelling specifically our new results.

The significance of this project is that we can have a clearer and deeper image about the familiarly

theoretical results of Markov chain. More importantly, this project helps us to build a concrete model

space Random Markov chain, then create a convenient condition for a deeper research in the direction
of Random Markov chain. This is also the last section of the paper included our future works and the

difficulties we are facing up.

2. The sense in theory graph

In the discrete time domain, a random process X = {Xn ∈ S
∣

∣n > 0} on the state space

S = {1, 2, . . . , N} is a Markov chain if it is a sequence of random variables each taking values in S and



78 Le Trung Kien et al. / VNU Journal of Science, Mathematics - Physics 23 (2007) 76-83

it satisfies the Markov property, i.e, its future evolution is independent of the past states and depends
only on the present state. Formally, X is a Markov chain if for all n 6 1 and all j, in−1, . . . , i1, i0 ∈ S,

P{Xn+1 = j
∣

∣Xn = i, Xn−1 = in−1, . . . , X1 = i1, X0 = i0} = P{Xn+1 = j
∣

∣Xn = i}.

If the probabilities governing X are independent of time, X is time-homogeneous. In this case,
we define a matrix P = (pij) whose element at the i-th row and j-th column,

pij = P{Xn+1 = j
∣

∣Xn = i} = P{X1 = j
∣

∣X0 = i}.

Matrix P is called 1-step transition matrix or simply the transition matrix of X .
Consider a digraph G = (V, E), where the vertex set V ≡ S = {1, 2, . . . , N}. The edge space of

G is constructed as follows: an edge from vertex i to vertex j, denote eij , if and only if in the model

of this finite-state Markov chain, the process can visit the state j after one step if now it stays in the

state i. In other words, for all i, j: eij ∈ E ⇔ pij > 0. We call the digraph G the boolean transition
graph of the Markov chain, and its associated a matrix calling the boolean transition matrix of this
Markov chain, denote Q = Qij, is constructed as follows:

Qij =

{

1 if eij ∈ E

0 otherwise

In the model of digraph G we give out some related concepts as following: A path P = i0i1 . . . ik

in a digraph G = (V, E) and calling P a path from i0 to ik if it is a non-empty sub-digraph of the form:

• Vertex space: VP = {i0, i1, . . . , ik} ⊂ V , where the ih are all distinct.

• Edge space: EP = {i0i1, i1i2, . . . , ik−1ik} ⊂ E.

The number of edges of the path, k, is called its length, the vertex i0 is called beginning-vertex
and the vertex ik is called ending-vertex.

In the directed graph G, vertex j is said to be accessible from vertex i, denote i→ j, if there is a

path from vertex i to vertex j. Otherwise, vertex j is said to be unaccessible from vertex i and denote

i 9 j. Two vertices i and j that are accessible to each other are said to communicate, and denote
i ↔ j. Vertex i is said recurrent if for all vertex j such that i → j then there will have a path from

j to i, j → i. Vertex i is said transient if it is not recurrent. Clearly the relation of communication
satisfies three properties reflexive, symmetric, and transitive so it is an equivalence. Two vertices that

communicate with each other are said to be in the same class; the concept of communication divides

the vertex space up into a number of separate classes.

From giving out the concepts: accessible, communicate, recurrent and transient in the model
digraph G, we see the similarity between these concepts and the corresponding concepts in the model

of finite-state Markov chain. In other words, if a vertex i is accessible or communicate to a vertex j; or

vertex i is recurrent then in the finite-state Markov chain model which is corresponded with, the state i

will be accessible or communicate to the state j; or the state i is recurrent state. With this construction,

it is obvious that we, basing on its boolean transition graph G, can solve the basic problems of the

finite-state Markov chain theory. From the definition, if a vertex is transient then all other vertices that

accessible with this vertex will be transient, or if this vertex is recurrent then all other vertices that it

accessible with will be recurrent. Thus, when we determine a vertex to be transient or recurrent, the

transient and recurrent properties of other vertices that are accessible with these vertices are deduced

and of course they are removed from further consideration. Moreover, this identification only depends



Le Trung Kien et al. / VNU Journal of Science, Mathematics - Physics 23 (2007) 76-83 79

on boolean transition graph G or boolean transition matrix Q. These following concepts and results

will specificialize this statement.

We start by defining the forward and backward sets of a vertex.

Definition 2.1. The forward set of vertex i ∈ V , denote by F(i), is the set of vertices that i is
accessibles with. That is, F(i) = {j ∈ V | i → j}. Similarly, the backward set of vertex i, denoted by
B(i), is the set of vertices that are accessible with i. That is, B(i) = {j ∈ V | j → i}.

We have the following results:

Proposition 2.1. A vertex i ∈ V is recurrent if and only if F(i) ⊆ B(i). In other words, i is transient
if and only if F(i) * B(i).

Theorem 2.1. [10] If vertex i ∈ V is transient, then all vertices in B(i) are transient. If vertex i is
recurrent, on the other hand, all vertices in F(i) are recurrent. In the latter case, the set F(i) is a
recurrent class, and the set B(i) −F(i) (if not empty) contains only transient vertices.
Proof. Suppose vertex i is transient. By Proposition 2.1, F(i) * B(i), i.e., ∃k ∈ F(i) such that k /∈ B(i).

Now, suppose vertex j ∈ B(i), then k ∈ F(j). This is because i ∈ F(j) so that F(i) ⊆ F(j). On the

other hand, B(j) ⊆ B(i) since j ∈ B(i). Therefore, we have vertex k ∈ F(j) but k /∈ B(j) since k /∈ B(i),

which implies F(j) * B(j) so that j is transient by Proposition 2.1.

Now, if vertex i is recurrent, i.e., F(i) ⊆ B(i) from Proposition 2.1, then, ∀j ∈ F(i) ⇒ i↔ j. So

we have F(j) ⊆ F(i) and B(i) ⊆ B(j). Thus, F(j) ⊆ F(i) ⊆ B(i) ⊆ B(j), which implies j is recurrent

from Proposition 2.1. Finally, if i is recurrent and B(i) −F(i) is not empty, let vertex k ∈ B(i) −F(i),

we merely need to show that F(k) * B(k) so that k is transient. In fact, k ∈ B(i) ⇔ i ∈ F(k), and

k /∈ F(i)⇔ i /∈ B(k), which implies F(k) * B(k).

Proposition 2.1 states that we can check if a vertex is recurrent by simply checking if its forward

set is contained in its backward set. If it is, then a recurrent class has been found which equals to

the forward set so that the vertices of this forward set can be removed from consideration. Moreover,

according to Theorem 2.1 if the backward set properly contains the forward set, those vertices in the

backward set not belonging to the forward set are all found to be transient. In the case the forward set

is not contained in the backward set, we have found a subset of transient vertices equal to {i} ∪ B(i).

The important problem in analyzing the long-run behavior of a finite-state Markov chain is

determining the recurrent states as exactly as possible. The following results will make Theorem 2.1

clearer and help us to look for the recurrent states easily.

Theorem 2.2. If vertex i ∈ V is transient, then all vertices in B(i) are transient. Moreover, there are
some vertices in F(i)\B(i) are recurrent; set F(i)\B(i) contains a recurrent class.
Proof. As we know, if j ∈ F(i), i, j ∈ V , then F(j) ⊆ F(i). So we can prove this theorem with

induction method according to the number of vertex of set F(i).

Let vertex i ∈ V is transient. Suppose the theorem is right with all transient vertices u ∈ V such

that |F(u)| < |F(i)|. Consider any vertex j ∈ F(i). If vertex j is recurrent, the theorem is right; then

F(i) contains a recurrent class, which is B(j). Otherwise, if j is transient. |F(j)| < |F(i)| so F(j)

contains a recurrent class. The theorem is still right.

We consider a digraph GR (correspond with PR) which has the same vertex space as G (corre-

spond with P) but in which all edges have been reversed in direction. If we call n(i) and m(i) tuong

ung be the number of paths starting and ending at vertex i. From Theorem 2.2 we have an important

result as follows:



80 Le Trung Kien et al. / VNU Journal of Science, Mathematics - Physics 23 (2007) 76-83

Theorem 2.3. The vertex i is recurrent in the digraph G if

n(i) = min{n(u) | u ∈ V }

The vertex j is recurrent in the digraph GR if

m(j) = min{m(u) | u ∈ V }

Proof. Consider a vertex i such that n(i) = min{n(u) | u ∈ V }. If vertex i is transient in G, from

Theorem 2.2 it exists a vertex i0 such that

(i) Vertex i0 is recurrent,

(ii) and existing a path P = ii1 . . . iki0, where vertex ik is transient.

Obviously from all paths starting at vertex i0, we can make another path starting at vertex i and

containing this path by adding path P forward to this path. In addition, path P is not a path starting

at vertex i0, so n(i) > n(i0), contradiction. Therefore, vertex i is recurrent in digraph G.

Basing on the statement that the class property are not affected by reversing all the directed

graph’s edges, we prove similarly the second idea.

From Theorem 2.3, each recurrent vertex in G or GR is identified the effectiveness via the number

of paths starting and ending at it. As we know, in Graph Theory, Depth-First Search algorithm (DFS)
is known as the most effective algorithm in finding the number of paths starting at one vertex and

ending at one vertex. In the following section, we will use the idea of DFS algorithm and Theorem 2.3

to construct an algorithm to classify state of finite-state Markov chain basing on its boolean transition

graph.

3. State classification algorithm

In this section, our main purpose is to give State Classification algorithm based on the ideas
of Strong Components algorithm and DFS algorithm to classify vertex in a digraph according to

transience and recurrence properties. Strong Components algorithm can be found throught any materials

mentioning “Design and Analysis of Algorithm & Directed graphs”.

From definition of DFS, when we enter a class, every vertex in the class is reachable, so DFS

does not terminate until all the vertices in this class have been visited. Thus all the vertices in a class

may appear in the same DFS tree of the DFS forest. Unfortunately, in general, many classes may

appear in the same DFS tree. Does there always exist a way to order the DFS such that just have

only one class appear in any DFS tree? Fortunately, the answer is yes. State Classification algorithm

will explain the reason why this answer is yes. In oder to investigate the idea of State Classification

algorithm, firstly, we study on the idea of Depth-First Search algorithm (DFS).

3.1. Depth-First Search

Assume that we are given a digraph G = (V, E). To compute effectively all paths starting and

ending at a vertex in G we submit an optimal surf-proposal to surf all paths in G. Concretely, we might

use the following strategy. Firstly, we maintain a color for each vertex: white means undiscovered,
gray means discovered but not finished processing, and black means finished. Then as the process
enter a vertex in V , the color of this vertex will be changed from white to gray to remind itself that

it was already there. Successively travel from vertex to vertex as long as the process comes to a place



Le Trung Kien et al. / VNU Journal of Science, Mathematics - Physics 23 (2007) 76-83 81

it has not already been. When the process returns to the same vertex, try a different edge leaving the

vertex (assuming it goes somewhere the process has not already been). When all vertices have been

tried in a given vertex, the color of this vertex will be change from gray to black and backtrack.

This is the general idea behind Depth-First Search. We will associate two numbers with each vertex.
There are time stamps. When we firstly discover a vertex i store a counter in d[i] and when we finish

processing a vertex we store a counter in f [i]. The algorithm is showed in Table 1.

Table 1. The code of Depth-First Search Algorithm.

Depth-First Search(G) { Visit(i) {
color[.]←white; pred[.]←null; color[i]←gray; d[i]←time + 1;

time←0; for each j in Adj(i)

for each i in V if (color[j] = white) {
if (color[i] = white) pred[j]←i;

Visit(i); Visit(j);

} }
color[i]←black; f[i]←time + 1;

}

3.2. State classification

We have a statement without proof as following: A vertex i of which finish time value, f [i], is

maximum will be recurrent in digraph GR. Moreover, if consider in a new digraph which is created

from the digraph GR after destroying the vertex i and all its relative edges, then the vertex with maximal

finish time value will be recurrent. Otherwise, clearly once the DFS starts within a given class, it must

visit every vertex within the class (and possibly some others) before finishing. If we do not start at a

recurrent class, then the search may “leak out” into other classes, and put them in the same DFS tree.

However, by visiting vertices in reverse topological order of finish times sequence {f [i] | i ∈ V }, each

search cannot “leak out” into other classes, because the DFS always starts within a recurrent class.

Tabel 2. The code of State Classification Algorithm.

StClass(G) {
Run DFS(G), computing finish times f[i] for each vertex i;

Compute GR ← Reverse(G);
Sort the vertices of GR (by QuickSort) in decreasing order of f[i];

DFS(GR) using this order;

Classes ← DFS tree;

If there exists an edge connected this class to another class

This class ← recurrent class;

}

This leaves us with the intuition that if we could somehow order the DFS, so that it hits the

vertices according to a reverse topological of finish times sequence {f [i] | i ∈ V }, then we will have



82 Le Trung Kien et al. / VNU Journal of Science, Mathematics - Physics 23 (2007) 76-83

an easy algorithm for finding recurrent classes and transient classes of a directed graph. The code of

State Classification algorithm to slove the class problem is given out in Table 2.

3. Our project and future work

As we know, the basic knowledge to build the finite-state Markov chain theory is really simple

and understandable. However, because of the simple theory, we will find difficulties in realizing some

important properties of the finite-state Markov chain theory without basing on experimental images

or results in the reality. For example, by means of experiment, we find out an interesting property

that “Consider a finite-state Markov chain which its state space is big enough (|S| > 100). If its

transition matrix is determined by P{pij > 0} = 10%, ∀i, j, with these events mutually independent,

then almost sure we can affirm that it is an irreducible aperiodic Markov chain” (See in [8]). Indeed,

when the requirement of science is higher and higher, the finite-state Markov chain theory is certainly

to be investigated deeperly. We believe that it is impossible to do that if we do not have the clear

sense about the structure or the movement of finite-state Markov chain model. From this point, in

the time to study on the finite-state Markov chain theory, we have made a small project with the

purpose of helping get a good sense to the finite-state Markov chain model. Our project is written

with Visual C ] language and its code program is very simple and understandable. This project deals

with the important problems of finite-state Markov chain theory such as classifying state, finding

stationary distribution. More interestingly, this project gives out the specific images about the digraph

modelling finite-state Markov chain, and shows clearly the acting process of DFS algorithm and State

Classification algorithm.

To model the finite-state Markov chain model by a digraph according to its transition matrix,

our porject is written with Visual C ], and is constituted of three Form and two Class: Form Finite
State Markov Chains, Form Table, Form Graph, Class MouseMove and Class PanelArray. With the
purpose of constructing the transition matrix, the Form Table brings out the two dimension array boxes

which allow us to input the data of transition matrix. Form Finite State Markov Chains combines

with Form Table to form a control system. In the Form Finite State Markov Chains, we have three

groups of control button. The group Construction helps us to build the digraph to model the finite-
state Markov chain; the group Classification makes the acting process of DFS and State Classification
algorithms; and the group Distribution allows us to compute the stationary distribution of finite-state
Markov chains. To help the Form Graph modelling the finite-state Markov chain model, the class

PanelArray presents a vertex or an edge in digraph as a control panel, and the class MouseMove, with

the purpose of moving a control panel, helps us to move a vertex or an edge easily. Thus, the Form

Graph creates successfully the active digraph model that we freely move the vertices and the curveness

of edges. Moreover, when a digraph is created with its transition matrix, we can change this graph

such as omitting some edges or vertices by changing values in its transition matrix. However, the most

interest we are self-assured in this project is that the group of buttons Construction can construct the

model of random directed graphs. As we know, Random Graphs, an interesting and important branch

of science, has some properties we can apply for Markov chain theory. Therefore, we hope that from

our project Random Graphs will be easily studied and beneficial from researching finite-state Markov

chain theory.

In recent years, lots of scientists all over the world are interested in constructing state classifi-

cation algorithm and finding the stationary distribution of finite-state Markov chains. Many projects



Le Trung Kien et al. / VNU Journal of Science, Mathematics - Physics 23 (2007) 76-83 83

like [11] are carried out to solve the above problems. However, without the purpose of studying on the

finite-state Markov chain theory deeperly, almost projects only focus on the results, not be concerned

with the structure and the movement of Markov chain model. From this situation, the establishment of

our project has significance in studying the finite-state Markov chain theory deeperly. Besides giving

out the result of state classifying and stationary distribution searching, our project has modelled exactly

the structure and the acting process of the Markov chain models with 200 states. However, due to the

limit of time and our knowledge, our project is poor in both content and formation. It’s hope that with

the supplementary database knowledge, we will solve all important problems of Markov chains which

its state space is large. When the number of state of Markov chain is extremely large, the important

properties will be recognized easily. The difficulty we are facing in upgrading this project in order to

work with the huge-state Markov chain is how to construct the Form Graph observing and describing

the modelled digraph. That’s our main future work!

Ackowledgments. This paper is based on the talk given at the Conference on Mathematics, Mechanics,

and Informatics, Hanoi, 7/10/2006, on the occasion of 50th Anniversary of Department of Mathematics,

Mechanics and Informatics, Vietnam National University, Hanoi. The authors are grateful to the referee

for carefully reading the paper and suggestions to improve the presentation.

References

[1] L. Page, S. Brin, R. Motwani, T. Windograd, The PageRank Citation Ranking: Bring Order to the Web, Stanford
University Technical Report, 1998.

[2] F. Chung, Laplacians and the Cheeger inequality for directed graphs, Annals of Combinatorics, to appear.
[3] J. Fakcharoenphol, An Improved VC-Dimension Bound for Finding Network Failures, Master’s thesis, Berkeley Uni-

versity of Califormia, 2001.
[4] T.H. Haveliwala, S.D. Kamvar, The second eigenvalue of the Google matrix, Stanford University Technical Report,

2003.
[5] S. Kamvar, T. Haveliwala, C. Manning, G. Golub, Extrapolation methods for accelerating PageRank computations, In

Proceedings of the Twelfth International World Wide Web Conference, 2003.
[6] J. Kleinberg, Detecting a Network Failure, Proc. 41st Annual IEEE Symposium on Foundations of Computer Science,

2002.
[7] P. Baldi, P. Frasconi, P. Smyth, Modeling the Internet and the Web, John Wiley & Sons, Inc. New York, 2003.
[8] B. Bollobás, Random Graphs, Cambridge University Press, 2001.
[9] D. Callaway, J. Hopcroft, J. Kleinberg, M. Newman, S. Stragatz, Are randomly grown graphs really random?

http://arxiv.org/abs/cond-mat/0104546 Vol 2 (2001) 1.
[10] D.M. Mount, Design and Analysis of Computer Algorithms, Dept. of Computer Science, University of Maryland, 2003.
[11] H. Tijms, P. Schram, Orstat: MCQueue, A software in Dept of Econometrics and Operational Research 2000-2002.


