
VNU Journal of Science, Natural Sciences and Technology 26 (2010) 89-94

89

Specifying Object-Oriented Design Patterns using OWL

Vu Dieu Huong1,*, Nguyen Van Vy1, Le Viet Ha2
1College of Technology, VNU, 144 Xuan Thuy, Hanoi, Vietnam

2Information Technology Institute, VNU, 144 Xuan Thuy, Hanoi, Vietnam

Received 20 July 2009

Abstract. Design patterns provide good solutions for problems occurred in the design stage. Using
design patterns in the software development processes helps improve productivity and quality of
software products. Pattern Oriented Analysis and Design Process has four steps related to patterns,
namely the acquaintance with design patterns in the pattern library, the retrieval of the pattern
candidate, the selection of suitable patterns and the application of selected patterns. It is necessary
to have a method to specify patterns in a machine understandable form to automate the above four
steps. Some works have tried to specify the structural aspects of design patterns by ontology. We
add the specification of the behavior aspects into design pattern ontology so that this ontology can
be used to automate steps in the Pattern Oriented Analysis and Design Process.
Keywords: design pattern, OWL, Ontology.

1. Introduction∗

Pattern Oriented Analysis and Design
Process (POAD) is a systematic process that
promotes pattern-based development [1].
POAD consists of four important steps:
acquaint with design patterns in the reusable
asset library, retrieve of the pattern candidates,
select suitable patterns and use the selected
patterns.

Design patterns are usually described in the
unstructured documents. A pattern document
includes many sections such as name of pattern,
intent, motivation, applicability (applicability
context of patterns), structure, implementation
and consequence [2].

∗ Corresponding author. Tel.: 84-4-37549016.
 E-mail: huongvd@vnu.edu.vn

Design patterns are also stored in some
databases or expressed by some means. In
recent years, many design pattern libraries have
been built [1].

The acquaintance activity in POAD
includes browsing catalogs of patterns that are
stored in libraries for the purpose of
understanding existing patterns. In this step, we
focus on intent sections and applicability
sections of the pattern documentations.

The retrieval activity in POAD is defined as
selecting patterns from the library. The selected
patterns are those produce solutions for
application requirements. Input of this step is
the set of application requirements. The
outcome of this step is a set of pattern
candidates. This set of pattern candidates is
used as input of the selection activity to select
the suitable patterns to pass to the next step.

mailto:huongvd@vnu.edu.vn

V.D. Huong et al. / VNU Journal of Science, Natural Sciences and Technology 26 (2010) 89-94

90

In the traditional way, to carry out the
acquaintance and the retrieval activities, all
patterns need to be read and the intent section
and the applicability section in document are
focused. Identifying and retrieving set of
pattern candidates are performed manually.
These activities take much time and effort. So,
it is necessary to automate these activities. If
the retrieval step is automated then the
acquaintance step isn’t necessary in POAD.

To retrieve set of pattern candidates for a
software system automatically, we need a
technique that allows comparing automatically
the requirement specification of the software
system with the context in which patterns
should be applied (the applicability context of
patterns). However, the comparison depends on
the specification method for the software
requirements and the applicability context of
patterns.

There were some specification methods for
Design Patterns (Patterns). Gamma et al
described twenty three patterns using text and
UML [2]. Maplesden introduced a set of graph
notations to model patterns [3]. These
specifications assist us in understanding
patterns.

Many researches specified patterns using
different formal specification languages such as
LePUS, Slam-Sl [4-6]. Using the formal
specification languages, we can specify
different aspects of patterns. However, it costs
much time to study formal methods and it is
very difficult to understand formal
specifications of patterns for new users.

Dietrich specified design patterns using
OWL [4]. OWL is quite similar to Object
Oriented modeling languages. Therefore, it is
easier for us to use OWL to specify patterns and
understand the OWL specification of patterns as
well. However, Dietrich just specifies the
structural aspect of patterns.

In this paper, we propose a method to
specify both the structural aspects and the
behavior aspects of patterns using OWL. Our
idea is specifying the applicability context of
design patterns in the form of object model to
compare the application requirements with the
applicability section of design patterns
automatically. This technique can therefore
assist in retrieving pattern candidates.

The rest of this paper is organized as
follows. Section 2 introduces an overview of
Ontology and OWL. Section 3 and section 4
represent our contribution, a method to specify
patterns and retrieve the pattern candidates from
ontology. We also illustrate in these sections
our approach’s implementation and an example
of retrieving the pattern candidates from our
ontology to be used in refining Customer-
Account management system. The last section
gives some perspectives and concludes the
paper.

2. Ontology and OWL

Ontology defines a common vocabulary for
researchers who need to share information in a
domain. It includes machine-interpretable
definitions of basic concepts in the domain and
relations among them [7].

We develop ontology for purposes:
- To share common understanding of the

structure of information among people or
software agents

- To enable reuse of domain knowledge
- To make domain assumptions explicit
OWL (Ontology Web Language) is

language for representing ontology [5]. It is a
powerful language to represent knowledge in a
machine understandable form based on a simple
data model using linked resources.

V.D. Huong et al. / VNU Journal of Science, Natural Sciences and Technology 26 (2010) 89-94

91

Most of the elements of an OWL ontology
concern classes, properties, instances of classes
(individuals), and relationships between these
instances.

The data described by an OWL ontology is
interpreted as a set of "individuals" and a set of
"property assertions" which relate individuals to
one another. An OWL ontology consists of a set
of axioms which place constraints on sets of
individuals (called "classes") and the types of
relationships permitted between them. These
axioms provide semantics by allowing systems
to infer additional information based on the data
explicitly provided.

OWL is the semantic web mark-up
language. A big advantage of it is openness.
Therefore, we can share knowledge in the OWL
ontology via internet and new knowledge can
also be added easily.

3. The Design Pattern Ontology

We develop the design pattern ontology to
share design patterns and to share experience in
using design patterns.

We can use some of languages to develop
ontology such as LOOM, LISP, XML, SHOE,
OIL, DAM+OIL, RDF, RDFS, OWL. In this
research, we use OWL to build the design
pattern Ontology.

3.1.Developing the design patterns ontology
using OWL

The design pattern ontology is defined with
classes, namely DesignPattern, Catalog,
Participant, Operation and ApplicationClass.
The class Catalog classifies a pattern according
to different categories. The class Participant
specifies information about participants in
patterns. Methods of these participants are
specified by the class Operation. The class
Participant and the class Operation represent the
collaboration of participants and therefore
represent the behavior aspect of patterns. The
class ApplicationClass describes the context
where patterns should be applied. Attributes of
classes in ontology are shown in the table 1.

Table 1. Properties of classes in DP Ontology

Classes Attributes Type of Value Range
Intent DataTypeProperty Text Design Pattern

InCatalog ObjectProperty The class Catalog
Catalog Decription DataTypeProperty Text

OfDesign Pattern ObjectProperty The class DesignPattern Paticipant
isAbstract DataTypeProperty Boolean

OfPaticipant ObjectProperty The class Paticipant
isAbstract DataTypeProperty Boolean

Operation

OfAppClass ObjectProperty The class ObjectProperty
ApplicationClass OfDesignPattern ObjectProperty The class DesignPattern

In the pattern document, the context is

described by text. However, in our approach,
applicability contexts of design patterns are
specified visually by a set of objects and
collaborations among them. The applicability
context of design patterns is specified by
objects which are instances of the class Class

and the collaboration of these objects. For
example, the specification of the applicability
context of Composite pattern is presented
visually by the class diagram in the figure 1.
There are whole class (e.g. PICTURES) and
partial classes (e.g. LINES and CIRCLES). The
relationship among these classes is composite

V.D. Huong et al. / VNU Journal of Science, Natural Sciences and Technology 26 (2010) 89-94

92

relationship. Concretely, PICTURES is a
composition of LINES and CIRCLES.

Fig. 1. Class diagram represents the applicability

context of Composite pattern.

3.2. Retrieving design patterns from Ontology

Artifacts of the analysis phase in the object
oriented development process include simple
class diagrams and simply interactive diagrams.
These diagrams are results of modeling
application requirements. We call these
diagrams as the initial diagrams of the design
phase in the development process and they are
inputs of retrieval step in POAD. The designers
need to retrieve design patterns which produce
solutions to refine these initial diagrams.

The applicability context of a design pattern
is specified by class diagram in which classes
are composed of attributes and operations. So,
we can select the pattern candidates
automatically by comparing classes in the
initial diagrams with classes in applicability
contexts of design patterns to find the
commonity. We can obtain that by comparing
such kinds of relationships as dependence,
composite, and inheritance, etc. In addition, we
can compare operations like creation
(constructors) and/or deletion (destructors). We
can also consider types of operation (abstract,
concrete), the execution order of operations or
parameters and return values, etc.

4. Implementation

We can use some tools to build, edit and
update the ontology, such as OntoEdit, OilED,
WebODE, Chimera DAG_Edit and Protégé.

In this research, we used Protégé 3.3.1 to
develop Design Pattern Ontology. Protégé is a
free, open source ontology editor. The Protégé
platform supports two main ways of modeling
ontology via the Protégé-Frames and Protégé-
OWL editors. Protégé ontology can be exported
into a variety of formats including RDF(S),
OWL, and XML Schema.

We specified object oriented design patterns
of Gamma et al [2]. A design view of Design
Pattern Ontology is shown in the figure 2.

Fig. 2. A view of the Design Pattern Ontology.

In order to illustrate our approach about
how to retrieve patterns from our ontology, we
execute the retrieval activity on an example. It
aims to refine a design of Customer-Account
management system in a bank. The initial
design class diagram of the system is
represented in the figure 3:

Pictures

+draw()

Lines

+draw()

Circles

+draw()

V.D. Huong et al. / VNU Journal of Science, Natural Sciences and Technology 26 (2010) 89-94

93

Customers

+ID
+FullName
+HomeFone
+CellFone
+HomeAddress

+createCustomer(id)
+checkCustomer(id)
+getID()
+getDetail(id)

ATMAccounts

+CardNumber
+AccNumber
+Owner
+Date
+Balance

+createATMAccs(id)
+deposit(id, m)
+withdraw(m)
+transfer(m, an)
+getBalance()
+getDetail()
+checkOwner(id)
+getAANumber()

SavingAccounts

+AccNumber
+Owner
+Date
+Amount

+createSavingAccs()
+deposit(m)
+withdraw(m)
+transfer(m, an)
+getBalanceAmount()
+getDetail()
+checkOwner(id)
+getSANumber()

Fig 3. A class diagram of Customer-Account

management system in a bank.

We need execute all queries which find out
the common properties of elements in the figure
3 and elements in the specification of the
applicability context of each pattern in DP
Ontology.

In this example, the query of
Composite pattern returns these match
elements: the Customs class is markable with
the Pictures class. The ATMAccounts class and
SavingAccounts are markable with the Line
class and Circles class. It means that the
Customers class is the whole class, the
ATMAccounts class and the SavingAccounts
classes are partial classes.

Therefore, relationships of classes in the
initial class diagram (presented in figure 3) and
relationships of classes in the specification of
Composite pattern have in common. This
means that we detected the Composite pattern is
a pattern candidate because it have the same
structural properties correspond at the initial
class diagram as illustrated in the figure 3.

Some patterns such as Iterator pattern,
Abstract Factory pattern and From Abstract

Classes to Interfaces can’t be in the set of
pattern candidates for this initial class diagram.

5. Conclusion and Future works

We proposed a specification method for
design patterns using OWL. In this approach,
we specified both the structural aspects and the
behavior aspects of patterns and specified the
applicability context of patterns by a set of
objects and the collaboration among them visually.

This method allows us to share design
patterns and to share experience in using these
patterns. This also assist in retrieving set of
pattern candidates which respond to a given
software requirement.

We also developed a Design Pattern
Ontology using OWL.

The difficult of our method is in specifying
the applicability context of patterns. We need
understand patterns to represent the
applicability context of patterns visually.
However, it is very easy for who develop
patterns or who have experiment in using patterns.

Ontology query languages such as Ontology
Web Language – Query Language (OWL-QL)
and ontology query tools such as OWQL Query
Service and Racer Manager Software have been
developing. We are going to study on
integrating Design Pattern Ontology with an
existing ontology query tool, study on
developing a new tool which support for
selecting design patterns automatically in
Pattern-Oriented Analysis and Design Process
and then evaluate the productivity of retrieval.

Acknowledgements

This work is partly supported by the
research project No. QCT 08.02 granted by
Vietnam National University, Hanoi.

V.D. Huong et al. / VNU Journal of Science, Natural Sciences and Technology 26 (2010) 89-94

94

References

[1] S. M. Yacoub, H. H. Ammar, Pattern-Oriented
Analysis and Design: Composing Patterns to
Design Software Systems, Addison Wesley,
U.S, August 28, 2003.

[2] E. Gamma, R. Helm, R. Johnson, J. Vlissides,
Design Patterns – Elements of reusable object-
oriented software, Addison-Wesley, U.S, 1995.

[3] D. Maplesden, J. Hosking, J. Grundy, “A Visual
Language for DP Modeling and Instantiation”,
HCC’01, IEEE, 2001, p. 338.

[4] J. Dietrich, C. Elgar. “A formal description of
Patterns using OWL”, ASWEC’05, IEEE, 2005,
p. 243.

[5] G. Epameinondas. "LePUS: A Formal Language
for Modeling Design Patterns." Ch. XVI in:
Toufik Taibi (ed.) Design Pattern Formalization
Techniques. Hershey, USA: Idea Group Inc,
2007, p. 357.

[6] A. Herranz, J. Jose, M. Navarro, “Modeling and
Reasoning about Patterns in Slam-Sl”. Ch. XVI
in: Toufik Taibi (ed.) Design Patterns
Formalization Techniques, IGI Publishing, U.S,
2007, p. 206.

[7] L. W. Lacy, Owl: Representing Information
Using the Web Ontology Language. Victoria,
BC, Canada, 2005.

Đặc tả các mẫu thiết kế hướng đối tượng sử dụng OWL

Vũ Diệu Hương1, Nguyễn Văn Vỵ1, Lê Việt Ha2
1Trường Đại học Công nghệ, ĐHQGHN, 144 Xuân Thủy, Hà Nội, Việt Nam
2Viện Công nghệ Thông tin, ĐHQGHN, 144 Xuân Thủy, Hà Nội, Việt Nam

Mẫu thiết kế cung cấp các giải pháp tốt cho các vấn đề nảy sinh trong giai đoạn thiết kế hệ thống.

Tiến trình phân tích, thiết kế hướng mẫu (POAD) là tiến trình phần mềm hướng đến mục tiêu tăng khả
năng sử dụng mẫu thiết kế. POAD có bốn bước liên quan đến mẫu: làm quen với các mẫu trong thư
viện mẫu, lấy ra các mẫu ứng viên phù hợp với hệ thống hiện tại, lựa chọn mẫu phù hợp nhất trong
danh sách mẫu ứng viên, sử dụng các mẫu đã chọn để thiết kế hệ thống. Hiện tại, chúng ta vẫn thực
hiện bốn bước này bằng tay. Để tự động hoá các bước này, chúng ta cần có một phương pháp đặc tả
các mẫu theo cách mà máy tính có thể hiểu được để nó có thể trợ giúp chúng ta thực hiện các hoạt
động với các mẫu. Trong nghiên cứu này, chúng tôi sử dụng OWL – ngôn ngữ sử dụng để xây dựng
ontology trên web, để đặc tả cả khía cạnh cấu trúc và hành vi của các mẫu để chúng ta có thể tự động
hoá các bước trong POAD.

