The hit problem for the dickson algebra

DSpace/Manakin Repository

The hit problem for the dickson algebra

Show simple item record


dc.contributor.author N.H.V., Hung
dc.contributor.author T.N., Nam
dc.date.accessioned 2011-05-09T02:50:30Z
dc.date.available 2011-05-09T02:50:30Z
dc.date.issued 2001
dc.identifier.citation Volume 353, Issue 12, Page 5029-5040 vi
dc.identifier.issn 29947
dc.identifier.uri http://tainguyenso.vnu.edu.vn/jspui/handle/123456789/7148
dc.description.abstract Let the mod 2 Steenrod algebra, .4, and the general linear group, GL(fc,F2), act on Pk := F2[x1 ,...,xk] with |x1| = 1 in the usual manner. We prove the conjecture of the first-named author in Spherical classes and the algebraic transfer, (Trans. Amer. Math Soc. 349 (1997), 3893-3910) stating that every element of positive degree in the Dickson algebra Dk := (Pk)GL(k'F2) is A-decomposable in Pfc for arbitrary k > 2. This conjecture was shown to be equivalent to a weak algebraic version of the classical conjecture on spherical classes, which states that the only spherical classes in Q0S0 are the elements of Hopf invariant one and those of Kervaire invariant one. ??2001 American Mathematical Society. vi
dc.language.iso en vi
dc.publisher Transactions of the American Mathematical Society vi
dc.subject Dickson algebra vi
dc.subject Invariant theory vi
dc.subject Stecnrod aleebra vi
dc.title The hit problem for the dickson algebra vi
dc.type Article vi

Files in this item

Files Size Format View
900.pdf 46.39Kb PDF View/Open

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account