Spherical classes and the lambda algebra

DSpace/Manakin Repository

Spherical classes and the lambda algebra

Show simple item record


dc.contributor.author N.H.V., Hltng
dc.date.accessioned 2011-05-09T02:55:41Z
dc.date.available 2011-05-09T02:55:41Z
dc.date.issued 2001
dc.identifier.citation Volume 353, Issue 11, Page 4447-4460 vi
dc.identifier.issn 29947
dc.identifier.uri http://tainguyenso.vnu.edu.vn/jspui/handle/123456789/7150
dc.description.abstract Let ???? = ?? ??k?? be Singer's invariant-theoretic model of the dual of the lambda algebra with H k(????) ?? Tork A(2,2), where A denotes the mod 2 Steenrod algebra. We prove that the inclusion of the Dickson algebra, Dk, into ??k?? is a chain-level representation of the Lannes-Zarati dual homomorphism *k : 2??ADk?? Tork A(2,2)??H k(????). The Lannes-Zarati homomorphisms themselves, k, correspond to an associated graded of the Hurewicz map H : ??*s(S0) ?? - H(Q0S0). Based on this result, we discuss some algebraic versions of the classical conjecture on spherical classes, which states that Only Hopf invariant one and Ke. rva. ire. invariant one classes are detected by the Hurewicz homomorphism. One of these algebraic conjectures predicts that every Dickson element, i. e. element in D/t, of positive degree represents the homology class 0 in Torj4(F2,F2) for k2. We also show that factors through F2Kerdk, where dkdenotes the differential of PA. Therefore, the problem of determining F2Ker?kshould be of interest. ?? 2001 American Mathematical Society. vi
dc.language.iso en vi
dc.publisher Transactions of the American Mathematical Society vi
dc.subject Adams spectral sequences vi
dc.subject Dickson algebra vi
dc.subject Invariant theory vi
dc.subject Lambda algebra vi
dc.subject Spherical classes vi
dc.subject Stcenrod algebra vi
dc.title Spherical classes and the lambda algebra vi
dc.type Article vi

Files in this item

Files Size Format View
901.pdf 48.04Kb PDF View/Open

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account