NGUYỄN ĐỊNH TRIỆU

CÁC PHƯƠNG PHÁP PHỔ TRỌNG HOÁ HỌC HỮU CƠ VÀ HOÁ Salph

NHÀ XUẤT BẢN ĐẠI HỌC QUỐC GIA HÀ NỘI
MỤC LỤC

Lời nói đầu ... 7

Chương 1. Mở đầu ... 10
 1.1. Vùng phổ quang học.. 10
 1.2. Định luật Lambert Beer ...
 1.3. Sơ đồ khối của phổ kế quang học..

Chương 2. Phương pháp phổ hồng ngoại và phổ Raman Error! Bookmark not defined.
 2.1. Dao động của nguyên tử trong phân tử Error! Bookmark not defined.
 2.1.1. Tần số dao động ..
 2.1.2. Dao động chuẩn ..
 2.1.3. Các yếu tố ảnh hưởng đến tần số đặc trưng Error! Bookmark not defined.
 2.2. Phổ hồng ngoại của hidrocacbon Error! Bookmark not defined.
 2.2.1. Hidrocacbon bão hòa..
 2.2.2. Anken ...
 2.2.3. Ankin ..
 2.2.4. Hidrocacbon thơm ..
 2.3. Ancol và phenol ... Error! Bookmark not defined.
 2.4. Ete .. Error! Bookmark not defined.
 2.5. Hợp chất anđehit và xeton ... Error! Bookmark not defined.
 2.6. Axit cacboxylic và dán xuất ... Error! Bookmark not defined.
 2.7. Hợp chất amin và dán xuất ... Error! Bookmark not defined.
 2.8. Các hợp chất chứa nitơ khác .. Error! Bookmark not defined.
 2.9. Hợp chất chứa lưu huỳnh, silic và photpho Error! Bookmark not defined.
 2.10. Hợp chất cơ kim loại ... Error! Bookmark not defined.
 2.11. Phức chất với kim loại ... Error! Bookmark not defined.
 2.12.1. Cơ sở lý thuyết ..
 2.12.2. Phổ Raman của các hợp chất hữu cơ Error! Bookmark not defined.
2.13. Phổ kế hồng ngoại và Raman

2.13.1. Phổ kế hồng ngoại

2.13.2. Phổ kế Raman

Chương 3. Phương pháp phổ tử ngoại và khả kiến

3.1. Cơ sở lý thuyết

3.1.1. Bước chuyển đổi năng lượng

3.1.2. Định luật Lambert Beer

3.1.3. Nhóm mang màu

3.1.4. Phân loại các dải hấp thụ

3.1.5. Quy tắc lựa chọn trong phổ tử ngoại khả kiến

3.1.6. Nguyên lý Franck - Condon

3.1.7. Các yếu tố ảnh hưởng đến cực đại hấp thụ

3.1.8. Phương pháp ghi phổ

3.2. Phổ tử ngoại và khả kiến của một số hợp chất hữu cơ

3.2.1. Hợp chất chứa nhóm mang màu biệt lập

3.2.2. Hợp chất polien

3.2.3. Hợp chất polienin và poliin

3.2.4. Hợp chất cacbonyl α, β-không no $\text{C}=$–$\text{C}=$–O

3.2.5. Hợp chất chứa nitơ

3.2.6. Benzen và dẫn xuất

3.2.7. Hệ dị vòng thơm

3.2.8. Axit amin, polipeptit và protein

3.3. Phương pháp phân tích định lượng

3.3.1. Phương pháp đo một bước sóng

3.3.2. Phương pháp lập đường chuẩn

3.3.3. Tính hằng số phân li

3.4. Cấu tạo của phổ kế tử ngoại và khả kiến

Chương 4. Phương pháp phổ cộng hưởng từ hạt nhân

4.1. Năng lượng cộng hưởng
4.2. Độ chuyển dịch hoá học

4.2.1. Hằng số chắn \(\sigma \)

4.2.2. Nguyên nhân xuất hiện hằng số chắn

4.2.3. Phương pháp tính độ chuyển dịch hoá học

4.3. Tương tác spin-spin (xuất hiện bội đỉnh)

4.3.1. Hằng số tương tác spin-spin \(J \)

4.3.2. Hằng số tương tác geminal, \(J_{\text{gen}} \)

4.3.3. Hằng số tương tác vicinal, \(J_{\text{vic}} \)

4.3.4. Hằng số tương tác anlyl, \(J_{\text{al}} \)

4.3.5. Hằng số tương tác qua bốn liên kết

4.3.6. Hằng số tương tác của proton thơm

4.4. Phương pháp phân tích phổ cộng hưởng từ hạt nhân \(^1\text{H}\)

4.4.1. Cường độ vạch phổ

4.4.2. Phân loại phổ

4.5. Phân tích phổ cộng hưởng từ hạt nhân \(^{13}\text{C}\)

4.5.1. Phổ \(^{13}\text{C}\) tương tác \(^1\text{H}\)

4.5.2. Phương pháp phổ \(^{13}\text{C}\) xóa tương tác \(^1\text{H}\)

4.5.3. Độ chuyển dịch hoá học

4.6. Phổ cộng hưởng từ hạt nhân của một số hạt nhân khác

4.6.1. Phổ CHTN–photpho–31 \((^{31}\text{P})\)

4.6.2. Phổ CHTHN–flo–19 \((^{19}\text{F})\)

4.6.3. Phổ CHTHN \(^{14}\text{N}\) và \(^{15}\text{N}\)

4.7. Một số phương pháp hỗ trợ phân tích phổ cộng hưởng từ hạt nhân hai chiều 2D–NMR

4.7.1. Cộng hưởng từ kép

4.7.2. Hiệu ứng NOE

4.7.3. Tác nhân chuyển dịch hoá học

4.8. Phân tích phổ cộng hưởng từ hạt nhân hai chiều 2D–NMR
4.8.5. Phổ HMBC và COLOC ...147
4.8.6. Phổ TOCSY và HMQC-TOCSY ..155
4.8.7. Phổ NOESY và ROESY..159

4.9. Phổ cộng hưởng từ hạt nhân của một số hợp chất hữu cơ.

4.9.1. Hợp chất bão hoà ...165
4.9.2. Hợp chất loại anken ..166
4.9.3. Hợp chất ankin ...167
4.9.4. Benzen và vòng ngưng tụ ..167
4.9.5. Ancol, phenol và ete ...168
4.9.6. Anđehit ..168
4.9.7. Xeton ..169
4.9.8. Este, lacton...169
4.9.9. Axit cacboxylic ...169
4.9.10. Amin, lactam ..169
4.9.11. Hợp chất chứa nhóm S–H, C–S–C và C=S169
4.9.12. Hợp chất chứa S, O ...170
4.9.13. Hợp chất chứa halogen ...170
4.9.15. Hợp chất di vòng piridin, quynolin ...171

4.10. Phổ cộng hưởng từ hạt nhân của axitamin, polipeptit, protein ... Error! Bookmark not defined.

4.11. Phổ kế cộng hưởng từ hạt nhân................................. Error! Bookmark not defined.

Chương 5. Phổ khối của các hợp chất hữu cơ ...179

5.1. Quá trình ion hoá phân tử ...179
5.1.1. Sự ion hoá ...179
5.1.2. Phân loại các ion ..180
5.1.3. Phổ khối phân giải cao ..184
5.2. Cơ chế phân mảnh phân tử ...186
5.2.1. Cơ chế tách ankyl (F_1) ... 186
5.2.2. Cơ chế tách olefin (F_2) ... 186
5.2.3. Cơ chế tách anyl (F_3) ... 186
5.2.4. Cơ chế tách ion tropylium (F_4) ... 187
5.2.5. Cơ chế tách oni (F_5) ... 187
5.2.6. Cơ chế tách Retro-Diels-Alder (F_6) ... 187
5.2.7. Chuyển vị McLafferty (H_1) .. 187
5.2.8. Chuyển vị gốc (H_2) ... 188
5.2.9. Chuyển vị ancol (H_3) ... 188
5.2.10. Cộng hợp Retro (H_4) ... 188
5.2.11. Chuyển vị Onium (H_5) ... 188
5.3. Phổ khối của các hợp chất hữu cơ ... 189
5.3.1. Hiđrocacbon .. 189
5.3.2. Hợp chất ancol, phenol và ete ... 198
5.3.3. Anđehit và xeton .. 209
5.3.4. Axit cacboxylic ... 214
5.3.5. Amin ... 220
5.3.6. Các hợp chất chứa nitơ khác ... 224
5.3.7. Hợp chất azo, azometin và oxim .. 227
5.3.8. Hợp chất halogen và thio ... 228
5.3.9. Hợp chất dị vòng ... 233
5.3.10. Phổ khối của một số ancaloit dị vòng ... 241
5.3.11. Phổ khối của axit amin và polipeptit ... 244
5.4. Nguyên lý cấu tạo khối phổ kế ... 248
5.4.1. Hóa khí mẫu .. 248
5.4.2. Ion hóa mẫu .. 249
5.4.3. Tách các ion theo số khối ... 250
5.4.4. Dectector .. 253
5.4.5. Ghi nhận tín hiệu ... 253
5.4.6. Sơ đồ cấu tạo khối phổ kế .. 253

Chương 6. Phần bài tập .. 263
6.1. Bài tập phổ hồng ngoại ... 263
6.2. Bài tập phổ tử ngoại ... 269
6.3. Bài tập phổ cộng hưởng từ hạt nhân .. 274
6.4. Bài tập phổ khối lượng ...287
6.5. Bài tập tổng hợp ...292
Tài liệu tham khảo ...323
LỜI NÓI ĐẦU

Ngày nay hóa học hữu cơ đang phát triển mạnh mẽ cả lý thuyết và ứng dụng, hàng năm có hàng vạn chất mới được tổng hợp hoặc tách từ thiên nhiên ra do đó yêu cầu tách tính khắt khe và xác minh cấu tạo của chúng là rất cần thiết, nó đòi hỏi phải nhanh và chính xác. Xưa kia để chứng minh cấu tạo một chất có thể mất hàng năm hoặc có khi kéo dài cả chục năm thì nay có thể thực hiện được sau vài giờ, sở dĩ làm được như vậy là nhờ có các phương pháp vật lý hiện đại đã hỗ trợ như các phương pháp sắc ký và các phương pháp phổ. Vì thế sự hiểu biết về các phương pháp vật lý nói chung và phương pháp phổ nói riêng là rất cần thiết cho tất cả những ai học tập và nghiên cứu hóa học hữu cơ và hóa sinh.

Nội dung của cuốn sách này không đi sâu về lý thuyết các phương pháp phổ mà tập trung vào phần ứng dụng các phương pháp phổ hồng ngoại, phổ tử ngoại và khả kiến, phổ cộng hưởng hạt nhân 1H và 13C và phổ khối lượng để phân tích cấu trúc các hợp chất hữu cơ, trong cuốn sách này còn được đưa vào một lượng bài tập dễn kẻ giúp cho người đọc có thể tự mình đọc được các phổ và giải thích cấu tạo của hợp chất.

Cuốn sách này có thể dùng làm tài liệu học tập và tham khảo cho sinh viên, học viên cao học, nghiên cứu sinh và cán bộ ngành hóa hữu cơ và hóa sinh của các trường Đại học và Viện nghiên cứu.

Hà Nội, ngày 30 tháng 8 năm 2007

Tác giả
Chương 1
MỞ ĐẦU

Để phân tích cấu tạo các hợp chất hữu cơ có thể sử dụng các phương pháp phổ như phổ hồng ngoại, phổ tử ngoại và khả kiến, phổ cộng hưởng từ hạt nhân, phổ khối lượng. Mỗi phương pháp cho phép xác định một số thông tin khác nhau của cấu tạo phân tử, như phương pháp phổ hồng ngoại cho phép xác định sự có mặt của các nhóm chức trong phân tử như nhóm OH, NH, CH, C=C, C=C, C=O, C=N, N=N…; phương pháp phổ tử ngoại, khả kiến cho phép xác định phân tử là hệ nối đôi liên hợp, hệ vòng thơm hay vòng bảo hòa…; phương pháp phổ cộng hưởng từ hạt nhân cho phép xác định cấu trúc không gian của phân tử và phương pháp phổ khối lượng cho phép xác định chính xác khối lượng phân tử, tỷ lệ phần trăm của các nguyên tố C, S, Br, Cl… và chứng minh cấu tạo phân tử.

Cơ sở của các phương pháp phổ hồng ngoại, Raman, tử ngoại và khả kiến gọi chung là phương pháp quang phổ là sự tương tác của ánh sáng với phân tử.

1.1. Vùng phổ quang học

Khi các phân tử tương tác với các vùng ánh sáng sẽ hấp thụ năng lượng của ánh sáng và xảy ra các quá trình khác nhau như quay phân tử, dao động nguyên tử trong phân tử và kích thích các electron liên kết, cho các loại phổ khác nhau như phổ quay, phổ hồng ngoại và phổ tử ngoại (bảng 1.1). Vùng ánh sáng có bước sóng λ từ 50 nm đến 200 nm (phổ tử ngoại chân không, UV vacum) từ 200 đến 400 nm (phổ tử ngoại, UV), từ 400 đến 800 nm (phổ khả kiến, VIS) và từ 0,8 đến 50 μm (phổ hồng ngoại, IR) được gọi là vùng phổ quang học. Ngoài ra, vùng từ 50 đến 800 nm còn có tên gọi là phổ điện tử (hay phổ electron) bao gồm phổ tử ngoại chân không, tử ngoại và khả kiến.