DSpace
 

Tai Nguyen So - Vietnam National University, Ha Noi - VNU >
TRƯỜNG ĐẠI HỌC CÔNG NGHỆ >
PTN Micro Nano >
Articles of Universities of Vietnam from Scopus >

Search

Please use this identifier to cite or link to this item: http://tainguyenso.vnu.edu.vn/jspui/handle/123456789/11830

Title: Roughness-induced piezoelectric scattering in lattice-mismatched semiconductor quantum wells
Authors: Quang D.N.
Tuoc V.N.
Huan T.D.
Keywords: 
Issue Date: 2003
Publisher: Physical Review B - Condensed Matter and Materials Physics
Citation: Volume 68, Issue 19, Page 1953161-19531612
Abstract: We present a theory of the mobility of electrons in real semiconductor quantum wells (QW's) made from lattice-mismatched epitaxial layers. In the case of zinc-blende structure QW's, we prove that besides the conventional scattering mechanisms, e.g., impurity doping, surface roughness, and alloy disorder there exists an ad hoc scattering source, which is due to a large fluctuating density of roughness-induced piezoelectric charges. Scattering by their piezoelectric field is found to be a new important scattering mechanism limiting the electron mobility of real strained QW's, especially those with a well thickness of the order of or greater than 50 Å. By incorporating this scattering into the theory, we are able to provide a perfect explanation for the low-temperature electron mobility measured in lattice-mismatched InGaAs-based QW's, which has not been understood starting from the so far-known scattering sources. The possibility of applying our theory to other lattice-mismatched systems such as Si/SiGe heterostructures and nitride-based QW's is outlined.
URI: http://tainguyenso.vnu.edu.vn/jspui/handle/123456789/11830
ISSN: 1631829
Appears in Collections:Articles of Universities of Vietnam from Scopus

Files in This Item:

File SizeFormat
HN_U1351.pdf49.56 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback