DSpace
 

Tai Nguyen So - Vietnam National University, Ha Noi - VNU >
ĐHQGHN - TẠP CHÍ KHOA HỌC >
TOÁN - VẬT LÝ - MATHEMATICS - PHYSICS >
NĂM 2009 >
Vol. 25, No.3 >

Search

Please use this identifier to cite or link to this item: http://tainguyenso.vnu.edu.vn/jspui/handle/123456789/12154

Title: On the set of periods for periodic solusions of some linear differential equations on the multidimensional sphere $S^n$
Authors: Dang, Khanh Hoi
Issue Date: 2009
Publisher: Tạp chí Khoa học
Citation: 169-177
Abstract: The problem about periodic solutions for the family of linear differential equation $$ L u\equiv \left(\frac{\partial}{i\partial t} - a\Delta \right)u(x,t)=\nu G(u-f)$$ is considered on the multidimensional sphere $x \in S^n$ under the periodicity condition $u|_{t=0}=u|_{t=b}$ and $\int_{S^n}u(x,t)dx=0.$ Here $a$ is given real, $\nu$ is a fixed complex number, $ G u(x,t) $ is a linear integral operator, and $\Delta$ is the Laplace operator on $S^n.$ It is shown that the set of parameters $(\nu, b)$ for which the above problem admits a unique solution is a measurable set of full measure in ${\Bbb C}\times {\Bbb R}^+.$
URI: http://tainguyenso.vnu.edu.vn/jspui/handle/123456789/12154
ISSN: 0866-8612
Appears in Collections:Vol. 25, No.3

Files in This Item:

File Description SizeFormat
Hoi_6.pdf622.31 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback