DSpace
 

Tai Nguyen So - Vietnam National University, Ha Noi - VNU >
ĐHQGHN - TẠP CHÍ KHOA HỌC >
TOÁN - VẬT LÝ - MATHEMATICS - PHYSICS >
Năm 2010 >
Vol. 26, No 1 >

Search

Please use this identifier to cite or link to this item: http://tainguyenso.vnu.edu.vn/jspui/handle/123456789/12343

Title: Periodic solutions of some linear evolution systems of natural differential equations on 2-dimensional tore
Authors: Dang, Khanh Hoi
Keywords: Natural differential operators, small denominators, spectrum of compact operators.
Issue Date: 2010
Publisher: Tạp chí Khoa học
Citation: 17-27
Abstract: In this paper we study periodic solutions of the equation \begin{equation}\label{a} \frac{1}{i}\left( \frac{\partial}{\partial t}+aA \right)u(x,t)=\nu G (u-f), \end{equation} with conditions \begin{equation}\label{b} u_{t=0}=u_{t=b}, \,\, \int_X (u(x),1) \, dx =0 \end{equation} over a Riemannian manifold $X$, where $$G u(x,t)=\int_Xg(x,y)u(y)dy $$ is an integral operator, $u(x,t)$ is a differential form on $X,$ $A=i(d+\delta)$ is a natural differential operator in $X$. We consider the case when $X$ is a tore $\Pi^2$. It is shown that the set of parameters $(\nu, b)$ for which the above problem admits a unique solution is a measurable set of complete measure in ${\Bbb C}\times {\Bbb R}^+.$
URI: http://tainguyenso.vnu.edu.vn/jspui/handle/123456789/12343
ISSN: 0866-8612
Appears in Collections:Vol. 26, No 1

Files in This Item:

File Description SizeFormat
3.pdf707.59 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback