DSpace
 

Tai Nguyen So - Vietnam National University, Ha Noi - VNU >
TRƯỜNG ĐẠI HỌC CÔNG NGHỆ >
PTN Micro Nano >
New - Articles of Universities of Vietnam from Scopus >

Search

Please use this identifier to cite or link to this item: http://tainguyenso.vnu.edu.vn/jspui/handle/123456789/13379

Title: Stable manifolds for semi-linear evolution equations and admissibility of function spaces on a half-line
Authors: Nguyen T.H.
Keywords: Admissibility of function spaces
Exponential dichotomy
Integral equations
Invariant stable manifolds
Local stable manifolds
Semi-linear evolution equations
Issue Date: 2009
Publisher: Journal of Mathematical Analysis and Applications
Citation: Volume 354, Issue 1, Page 372-386
Abstract: Consider an evolution family U = (U (t, s))t ≥ s ≥ 0 on a half-line R+ and a semi-linear integral equation u (t) = U (t, s) u (s) + ∫st U (t, ξ) f (ξ, u (ξ)) d ξ. We prove the existence of stable manifolds of solutions to this equation in the case that (U (t, s))t ≥ s ≥ 0 has an exponential dichotomy and the nonlinear forcing term f (t, x) satisfies the non-uniform Lipschitz conditions: {norm of matrix} f (t, x1) - f (t, x2) {norm of matrix} ≤ φ (t) {norm of matrix} x1 - x2 {norm of matrix} for φ being a real and positive function which belongs to admissible function spaces which contain wide classes of function spaces like function spaces of Lp type, the Lorentz spaces Lp, q and many other function spaces occurring in interpolation theory. © 2009 Elsevier Inc. All rights reserved.
URI: http://tainguyenso.vnu.edu.vn/jspui/handle/123456789/13379
ISSN: 0022247X
Appears in Collections:New - Articles of Universities of Vietnam from Scopus

Files in This Item:

File SizeFormat
HN_U482.pdf49.71 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback