DSpace
 

Tai Nguyen So - Vietnam National University, Ha Noi - VNU >
TRƯỜNG ĐẠI HỌC CÔNG NGHỆ >
PTN Micro Nano >
Magnetic Biochips Articles from Scopus >

Search

Please use this identifier to cite or link to this item: http://tainguyenso.vnu.edu.vn/jspui/handle/123456789/13908

Title: A microfluidic filter biochip-based chemiluminescence biosensing method for detection of Escherichia coli O157:H7
Authors: Varshney M.
Li Y.
Srinivasan B.
Tung S.
Erf G.F.
Slavik M.F.
Ying Y.
Fang W.
Keywords: Bacterial detection
Chemiluminescence
E. coli O157:H7
Microbeads
Microchannel
Microfluidic
Sampling technique
Issue Date: 2006
Publisher: Transactions of the ASABE
Citation: Volume 49, Issue 6, Page 2061-2068
Abstract: A chemiluminescence biosensing method combined with a microfluidic filter biochip was investigated and evaluated for rapid and sensitive detection of Escherichia coli O157:H7, A microfluidic filter biochip was designed based on stepped filter configuration to concentrate and form a single layer of immunomagnetic microbeads inside a reaction microchamber. The filter biochip was assembled by thermally bonding two glass chips (microchamber and microchannel chips) together. The microchamber chip with one inlet and a reaction microchamber was 1 mm x 7 mm x 11.5 mu;m, and the microchannel chip with three outlets was 1 mm x 1 mm x 2.5 μm. Carboxyl-modified magnetic microbeads (8.27 μm diameter) covalently coupled with anti-E. coli O157:H7 antibodies were used for the separation of target bacteria from the background. The food sample containing E. coli O157:H7 was mixed with immunomagnetic microbeads and horseradish peroxidase-labeled anti-E. coli O157:H7 antibodies to form sandwich complexes. A syringe pump was used to inject the sandwich complexes into the filter biochip, and then luminol was added to generate a chemiluminescence signal, which was collected, measured, and recorded in real time through a fiber optic light guide connected to a photon detector coupled to a PC with a data acquisition unit. The results indicated that this filter biochip-based chemiluminescence biosensing method could detect as few as 71 cells of E. coli O157:H7 inside the reaction microchamber of 12 nL volume by single-batch sampling without pre-enrichment. The volume of sample used for testing was 100 μL. A multi-batch sampling technique was used to increase the capture efficiency of the immunomagnetic microbeads for detecting low numbers of E. coli O157:H7, which reduced the detection limit to 34 cells of E. coli O157:H7. The total detection time was 90 min. © 2006 American Society of Agricultural and Biological Engineers.
URI: http://tainguyenso.vnu.edu.vn/jspui/handle/123456789/13908
ISSN: 
Appears in Collections:Magnetic Biochips Articles from Scopus

Files in This Item:

File SizeFormat
MAGNETIC62.pdf44.31 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback