DSpace
 

Tai Nguyen So - Vietnam National University, Ha Noi - VNU >
ĐHQGHN - TẠP CHÍ KHOA HỌC >
TOÁN - VẬT LÝ - MATHEMATICS - PHYSICS >
NĂM 2005 >
Vol. 21, No.2 >

Search

Please use this identifier to cite or link to this item: http://tainguyenso.vnu.edu.vn/jspui/handle/123456789/474

Title: Singularity of Fractal Measure Associated with The $(0, 1, 7)$ - Problem
Authors: Truong, Thi Thuy Duong
Vu, Hong Thanh
Keywords: Fractal Measure
Issue Date: 2005
Publisher: ĐHQGHN
Citation: VNU. JOURNAL OF SCIENCE, Mathematics - Physics. T.XXI, N02 - 2005
Abstract: Let μ be the probability measure induced by S = 􀀟 ∞n =1 3−nXn, where X1,X2, ... is a sequence of independent, identically distributed (i.i.d) random variables each taking values 0, 1, a with equal probability 1/3. Let α(s) (resp.α(s), α(s)) denote the local dimension (resp. lower, upper local dimension) of s ∈ supp μ, and let α = sup{α(s) : s ∈ supp μ}; α = inf{α(s) : s ∈ supp μ}; E = {α : α(s) = α for some s ∈ supp μ} . In the case a = 3k +1 for k = 1, E = [1 − log(1+√5)−log 2 log 3 , 1], see [10]. It is conjectured that in the general case, for a = 3k + 1 ( k ∈ N), the local dimension is of the form as the case k = 1, i.e., E = [1 − log a b log 3 , 1] for a, b depends on k. In fact, our result shows that for k = 2 (a = 7), we have α = 1, α = 1− log(1+√3) 3 log 3 and E = [1 − log(1+√3) 3 log 3 , 1].
Description: VNU. JOURNAL OF SCIENCE, Mathematics - Physics. Vol. 21,No. 2 - 2005
URI: http://hdl.handle.net/123456789/474
ISSN: 0866-8612
Appears in Collections:Vol. 21, No.2

Files in This Item:

File Description SizeFormat
Bai_2.pdf207.31 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback