DSpace
 

Tai Nguyen So - Vietnam National University, Ha Noi - VNU >
ĐẠI HỌC QUỐC GIA HÀ NỘI - VIETNAM NATIONAL UNIVERSITY, HANOI >
BÀI BÁO ĐĂNG TRÊN SCOPUS >
2001-2005 VNU-DOI-Publications >

Search

Please use this identifier to cite or link to this item: http://tainguyenso.vnu.edu.vn/jspui/handle/123456789/7120

Title: Mapping of genes controlling aluminum tolerance in rice: Comparison of different genetic backgrounds
Authors: Nguyen, V.
Nguyen, B.
Sarkarung, S.
Martinez, C.
Paterson, A
Nguyen, H.
Keywords: Abiotic stress
Aluminum toxicity
Oryza sativa L.
QTL mapping
Rice genetics
Issue Date: 2002
Publisher: Molecular Genetics and Genomics
Citation: Volume 267, Issue 6, Page 772-780
Abstract: Aluminum toxicity is the main factor limiting the productivity of crop plants in acid soils, particularly in the tropics and subtropics. In this study, a doubled-haploid population derived from the rice (Oryza sativa L.) breeding lines CT9993 and IR62266 was used to map genes controlling Al tolerance. A genetic linkage map consisting of 280 DNA markers (RFLP, AFLP and SSR) was constructed to determine the position and nature of quantitative trait loci (QTLs) affecting Al tolerance. Three characters - control root length (CRL), Al-stressed root length (SRL) and root length ratio (RR) - were evaluated for the DH lines and the parents at the seedling stage in nutrient solution. A total of 20 QTLs controlling root growth under Al stress and control conditions were detected and distributed over 10 of the 12 rice chromosomes, reflecting multigenic control of these traits. The two QTLs of largest effect, qALRR-1-1 and qALRR-8 for root length ratio (a measurement of Al tolerance) were localized on chromosomes 1 and 8, respectively. Three other QTLs in addition to qALRR-8 were apparently unique in the CT9993 x IR62266 mapping population, which may explain the high level of Al tolerance in CT9993. Comparative mapping identified a conserved genomic region on chromosome 1 associated with Al tolerance across three rice genetic backgrounds. This region provides an important starting point for isolating genes responsible for different mechanisms of aluminum tolerance and understanding the genetic nature of this trait in rice and other cereals.
URI: http://tainguyenso.vnu.edu.vn/jspui/handle/123456789/7120
ISSN: 16174615
Appears in Collections:2001-2005 VNU-DOI-Publications

Files in This Item:

File Description SizeFormat
883.pdf57.3 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback