DSpace
 

Tai Nguyen So - Vietnam National University, Ha Noi - VNU >
ĐẠI HỌC QUỐC GIA HÀ NỘI - VIETNAM NATIONAL UNIVERSITY, HANOI >
BÀI BÁO ĐĂNG TRÊN SCOPUS >
2001-2005 VNU-DOI-Publications >

Search

Please use this identifier to cite or link to this item: http://tainguyenso.vnu.edu.vn/jspui/handle/123456789/7150

Title: Spherical classes and the lambda algebra
Authors: N.H.V., Hltng
Keywords: Adams spectral sequences
Dickson algebra
Invariant theory
Lambda algebra
Spherical classes
Stcenrod algebra
Issue Date: 2001
Publisher: Transactions of the American Mathematical Society
Citation: Volume 353, Issue 11, Page 4447-4460
Abstract: Let ???? = ?? ??k?? be Singer's invariant-theoretic model of the dual of the lambda algebra with H k(????) ?? Tork A(2,2), where A denotes the mod 2 Steenrod algebra. We prove that the inclusion of the Dickson algebra, Dk, into ??k?? is a chain-level representation of the Lannes-Zarati dual homomorphism *k : 2??ADk?? Tork A(2,2)??H k(????). The Lannes-Zarati homomorphisms themselves, k, correspond to an associated graded of the Hurewicz map H : ??*s(S0) ?? - H(Q0S0). Based on this result, we discuss some algebraic versions of the classical conjecture on spherical classes, which states that Only Hopf invariant one and Ke. rva. ire. invariant one classes are detected by the Hurewicz homomorphism. One of these algebraic conjectures predicts that every Dickson element, i. e. element in D/t, of positive degree represents the homology class 0 in Torj4(F2,F2) for k2. We also show that factors through F2Kerdk, where dkdenotes the differential of PA. Therefore, the problem of determining F2Ker?kshould be of interest. ?? 2001 American Mathematical Society.
URI: http://tainguyenso.vnu.edu.vn/jspui/handle/123456789/7150
ISSN: 29947
Appears in Collections:2001-2005 VNU-DOI-Publications

Files in This Item:

File Description SizeFormat
901.pdf48.04 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback