DSpace
 

Tai Nguyen So - Vietnam National University, Ha Noi - VNU >
ĐẠI HỌC QUỐC GIA HÀ NỘI - VIETNAM NATIONAL UNIVERSITY, HANOI >
BÀI BÁO ĐĂNG TRÊN SCOPUS >
2006-2008 VNU-DOI-Publications >

Search

Please use this identifier to cite or link to this item: http://tainguyenso.vnu.edu.vn/jspui/handle/123456789/7210

Title: The smallest subgroup whose invariants are hit by the Steenrod algebra
Authors: N.H.V., Hung
T.D., Luong
Keywords: Steenrod algebra
smallest
invariants
Issue Date: 2007
Publisher: Mathematical Proceedings of the Cambridge Philosophical Society
Citation: Volume: 142, Issue: 1, Page : 63-71
Abstract: Let V be a k-dimensional double-struck capital F-sign2-vector space and let W be an ndimensional vector subspace of V. Denote by GL(n, double-struck capital F-sign2) ? 1k-n the subgroup of GL(V) consisting of all isomorphisms ?? : V ?? V with ??(W) = W and ??(?) ? ? (mod W) for every ? ?? V. We show that GL(3, double-struck capital F-sign2) ? 1k-3 is, in some sense, the smallest subgroup of GL(V) ?? GL(k, double-struck capital F-sign2), whose invariants are hit by the Steenrod algebra acting on the polynomial algebra, H*(BV; double-struck capital F-sign2) ?? double-struck capital F-sign2[x1, . . . , x k]. The result is some aspect of an algebraic version of the classical conjecture that the only spherical classes in Q0S 0 are the elements of Hopf invariant one and those of Kervaire invariant one. ?? 2007 Cambridge Philosophical Society.
URI: http://tainguyenso.vnu.edu.vn/jspui/handle/123456789/7210
ISSN: 3050041
Appears in Collections:2006-2008 VNU-DOI-Publications

Files in This Item:

File Description SizeFormat
611.pdf46 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback