dc.contributor.author | Le, Van An | |
dc.contributor.author | Ngo, Si Tung | |
dc.date.accessioned | 2011-04-20T07:23:02Z | |
dc.date.available | 2011-04-20T07:23:02Z | |
dc.date.issued | 2007 | |
dc.identifier.citation | VNU Journal of Science, Mathematics - Physics 23 (2007) 189-193 | vi |
dc.identifier.issn | 0866-8612 | |
dc.identifier.uri | http://hdl.handle.net/123456789/1036 | |
dc.description | VNU Journal of Science, Mathematics - Physics. Vol. 23 (2007), No 4, P. 189-193 | vi |
dc.description.abstract | A module M is called (IEZ)−module if for the submodules A,B, C of M such that A \ B = A \ C = B \ C = 0, then A \ (B C) = 0. It is shown that: (1) Let M1, ...,Mn be uniform local modules such that Mi does not embed in J(Mj) for any i, j = 1, ..., n. Suppose that M = M1 ... Mn is a (IEZ)−module. Then (a) M satisfies (C3). (b) The following assertions are equivalent: (i) M satisfies (C2). (ii) If X M,X = Mi (with i 2 {1, ..., n}), then X M. (2) Let M1, ...,Mn be uniform local modules such that Mi does not embed in J(Mj) for any i, j = 1, ..., n. Suppose that M = M1 ... Mn is a nonsingular (IEZ)−module. Then, M is a continuous module. | vi |
dc.language.iso | en | vi |
dc.publisher | ĐHQGHN | vi |
dc.subject | Mathematics | vi |
dc.subject | (IEZ)-modules | vi |
dc.title | Some results on (IEZ)-modules | vi |
dc.type | Article | vi |
Files | Size | Format | View |
---|---|---|---|
An_Tung.pdf | 128.3Kb |
View/ |