Some results on (IEZ)-modules

DSpace/Manakin Repository

Some results on (IEZ)-modules

Show simple item record


dc.contributor.author Le, Van An
dc.contributor.author Ngo, Si Tung
dc.date.accessioned 2011-04-20T07:23:02Z
dc.date.available 2011-04-20T07:23:02Z
dc.date.issued 2007
dc.identifier.citation VNU Journal of Science, Mathematics - Physics 23 (2007) 189-193 vi
dc.identifier.issn 0866-8612
dc.identifier.uri http://hdl.handle.net/123456789/1036
dc.description VNU Journal of Science, Mathematics - Physics. Vol. 23 (2007), No 4, P. 189-193 vi
dc.description.abstract A module M is called (IEZ)−module if for the submodules A,B, C of M such that A \ B = A \ C = B \ C = 0, then A \ (B C) = 0. It is shown that: (1) Let M1, ...,Mn be uniform local modules such that Mi does not embed in J(Mj) for any i, j = 1, ..., n. Suppose that M = M1 ... Mn is a (IEZ)−module. Then (a) M satisfies (C3). (b) The following assertions are equivalent: (i) M satisfies (C2). (ii) If X M,X = Mi (with i 2 {1, ..., n}), then X M. (2) Let M1, ...,Mn be uniform local modules such that Mi does not embed in J(Mj) for any i, j = 1, ..., n. Suppose that M = M1 ... Mn is a nonsingular (IEZ)−module. Then, M is a continuous module. vi
dc.language.iso en vi
dc.publisher ĐHQGHN vi
dc.subject Mathematics vi
dc.subject (IEZ)-modules vi
dc.title Some results on (IEZ)-modules vi
dc.type Article vi

Files in this item

Files Size Format View
An_Tung.pdf 128.3Kb PDF View/Open

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account